
Adaptive Trajectory Library Planner for Fast Outdoor Robots

Nguyen Thanh Trung Le, Edward Bray, Ki Myung Brian Lee, Graeme Best
University of Technology Sydney, Australia

{nguyenthanhtrung.le, edward.bray, kmbrian.lee, graeme.best}@uts.edu.au

Abstract

High-speed autonomous operation in outdoor
environments requires fast computation of dy-
namically feasible, collision-free paths. To this
end, we propose a new local path planning algo-
rithm called Adaptive Trajectory Library. This
approach relies on the selection of a suitable
trajectory from a precomputed library to re-
duce online computation. A subset of trajec-
tories that are dynamically feasible are consid-
ered, from which one is chosen to best move the
robot towards a goal location while avoiding
obstacles. In simulated experiments, the pro-
posed algorithm significantly outperforms the
Dynamic Window Approach [Fox et al., 1997]

with 84.2 % less travel time and 39.5 % shorter
path length. Hardware experiments in outdoor
environments show that the proposed planner
is able to reliably compute paths for a robot to
follow to reach goals at high speeds in off-road
terrain while avoiding obstacles.

1 Introduction

Autonomous robots that move at high speeds through
outdoor environments could offer huge benefits in a vari-
ety of scenarios, including agriculture and defence. Such
robots would be able to effectively operate in much larger
areas than traditional systems that operate indoors at
low speeds, increasing the range of tasks they could com-
plete. The recent boom in electric vehicle technology has
increased the availability of crucial components such as
high torque electric motors, meaning high-speed ground-
based autonomous robots can now be constructed by re-
searchers with modest budgets. Despite their potential,
deploying these robots presents new challenges compared
to traditional systems.

Robots operating autonomously in real-world envi-
ronments, both indoors and outdoors, must be able to
safely navigate their environment. A crucial component

Figure 1: Adaptive Trajectory Library (ATL) in action as
the robot moves to the red circled waypoint. Obstacles
are detected by a lidar and represented on a 2D costmap
(black). A dynamically feasible subset of the library is
considered, and trajectories that result in collision are
discarded (red). A cost function is evaluated for the
collision-free trajectories (green), and the robot moves
along the one with the lowest cost (thick green).

of such autonomous navigation is local path planning,
where a robot must decide how to reach a given goal lo-
cation while obeying certain constraints, such as avoid-
ing obstacles or choosing a short route [Karur et al.,
2021]. The local path planner chooses which trajectory
the robot should follow at any instant [Coulter, 1992;
Fox et al., 1997; Rösmann et al., 2012].

Local path planning for a high-speed outdoor robotic
vehicle such as the one in Figure 2 operating in an un-
structured outdoor environment is more demanding than
for traditional indoor robots [Likhachev and Ferguson,
2009]. An obvious challenge associated with controlling
such vehicles is to minimise the time taken for compu-
tation: since the robot is expected to achieve high ve-
locities while avoiding any obstacles, accurate decisions

(a) (b)

Figure 2: The Fast Off-Road Vehicle (FORV) developed
at UTS in (a) simulation and (b) hardware.

must be made quickly. Increasing the speed of a robot
will increase its inertia, thus reducing its responsiveness.
A local planner for such scenarios should ensure planned
trajectories are feasible to execute given the dynamics
and current state of the robot. Furthermore, outdoor op-
eration presents difficulties not experienced in structured
indoor arenas, such as unpredictable terrain and changes
to the environment during operation [Chu et al., 2012;
Goswami, 2017].

This paper propose a new local planner for a fast out-
door robotic vehicle, called Adaptive Trajectory Library
(ATL, Figure 1). A library of possible trajectories is first
precomputed, containing combinations of linear and an-
gular velocities that can be achieved by the robot. At
each planning instant, a subset of the library is consid-
ered which is adapted to contain only those trajectories
that are feasible to achieve given the current state of the
robot. A trajectory is selected from this subset that is
the most suitable at this time, considering the goal lo-
cation and obstacle avoidance. This approach manages
computational resources more efficiently than calculat-
ing possible trajectories online, while ensuring that se-
lected actions are actually feasible. The responsiveness
of the robot is therefore increased compared to other
methods, even when travelling at high speed.

We apply our approach to the Fast Off-Road Robotic
Vehicle developed at UTS (Figure 2). We compare the
performance of the proposed ATL planner to the existing
DWA planner [Fox et al., 1997] in realistic simulation
experiments as illustrated in Figure 3, and show that
the ATL planner offers 84.2 % reduction in travel time
and 39.5% in path length owing to explicit consideration
of dynamic feasibility, such as excluding spot turns. We
then demonstrate the effectiveness of ATL in real-world
operation through experiments with a full-scale robot in
an outdoor environment with uneven terrain containing
several obstacles.

Figure 3: FORV within the NEGS-UGV park terrain
used in Gazebo simulations [Sánchez et al., 2022].

2 Related Work

Local path planning has been the subject of research for
decades. One of the earliest methods proposed was Arti-
ficial Potential Fields [Khatib, 1986], in which obstacles
are modelled as repulsive fields and goal locations as at-
tractive fields. Robots follow descending gradients in the
resultant of these fields to reach the goal. This approach
gives good obstacle avoidance, but robots can get stuck
in local minima.

Another traditional method of path planning is Pure
Pursuit (PP) [Coulter, 1992]. Robots following this
scheme move at a constant forward velocity and the
controller calculates instantaneous angular velocities to
move the robot to a point a specified distance ahead
of it. Extensions to PP, including Adaptive Pure Pur-
suit [Campbell, 2007] and Regulated Pure Pursuit [Ma-
censki et al., 2023], improve this algorithm by allowing
the robot to vary its linear velocity, reduce sharp turns,
and react to newly-observed obstacles. PP controllers
consider only the geometry of the current scenario with-
out taking the dynamics into account, so are not suit-
able for robots with significant dynamic feasibility con-
straints.

The popular DWA algorithm considers the dynamics
of the robot during planning [Fox et al., 1997]. Here, the
potential paths resulting from a range of linear and an-
gular velocities are simulated over a short time period. A
suitable instantaneous trajectory is chosen by assigning
a cost to each that trades off between the distance to ob-
stacles and how closely the given path is followed. DWA
has been found to perform well at calculating dynami-
cally feasible motion plans relatively quickly, but online
computation of the paths takes time, and can lead to
poor or unpredictable path selections when run at the
high frequencies required for high-speed robots.

Optimisation-based methods such as TEB [Rösmann
et al., 2012; 2017] have also been applied to local path

planning. TEB uses least-squares optimisation to deform
a commanded path to avoid obstacles while respecting
dynamic feasibility. However, similar to DWA the solu-
tion quality is subject to trade-off against computation
time, thus is not suitable for high-speed operations.

To increase the responsiveness of motion planners, re-
searchers have recently explored the use of a library of
dynamically feasible trajectories that is generated offline.
Such libraries of collision free, dynamically feasible tra-
jectories have been used to efficiently calculate paths for
robotic manipulators to achieve repetitive tasks, such as
removing weeds from fields [Lee et al., 2014] or pruning
trees [You et al., 2020]. A similar approach has also been
applied to quadrotor aerial robots [Best et al., 2023]:
given the commanded path from an upstream planner,
a path planning algorithm selects the closest collision-
free trajectory from a precomputed library that is also
dynamically feasible given current state of the robot. In
this paper, we explore how this principle could be ap-
plied to a ground robot moving at high speeds.

Graph search methods are also commonly applied
to robot path planning. These approaches typi-
cally begin with generating a Probabilistic Roadmap
(PRM) [Kavraki et al., 1996], a graph where nodes repre-
sent possible robot states, and edges are added between
pairs of nodes within a set distance if there is a collision-
free path. Algorithms such as that of Dijkstra [Dijk-
stra, 1959], A* [Hart et al., 1968], D* [Stentz, 1994] are
then used to find paths through the PRM that the robot
can follow. Other popular methods of generating and
searching trees include the Rapidly Exploring Random
Trees [LaValle and Kuffner Jr, 2001] and Fast Marching
Tree [Janson et al., 2015] algorithms. These methods are
well established and yield optimal solutions with respect
to the distance travelled in reaching the goal. However,
the construction of the graph is computationally expen-
sive, thus reducing its suitability for robots operating at
high speeds where decisions must be made quickly. Two
dimensional graphs are commonly used, but capturing
constraints such as ensuring dynamic feasibility requires
constructing the graph in higher state spaces. The search
problem quickly becomes intractable as the PRM grows
with larger spatial scale or with additional constraints.

The high computational cost of graph search meth-
ods can be reduced by minimising the size of the graph.
This can be done by modelling the environment as
a multi-resolution lattice state space, so the search
can be performed at different scales to increase effi-
ciency [Likhachev and Ferguson, 2009]. However, this
approach relies on heuristics which can be hard to tune,
and remains computationally expensive for the graphs
necessary to operate in very large areas or with several
dynamic feasibility constraints. Another common ap-
proach is to use a separate global planner to find a path

through a low density graph, and assign the low-level
navigation to a suitable local path planning algorithm
such as those mentioned previously [Best et al., 2023].

3 Problem Formulation

We consider a robot described by anN -dimensional state
xt (e.g., position and orientation) and an M -dimensional
control action ut (e.g., translational and rotational veloc-
ity command) at each time t. Feasible states and control
actions are limited to subsets X ⊂ RN and U ⊂ RM re-
spectively. The state xt and the control actions ut are
governed by a dynamic model f :

ẋt = f(xt,ut). (1)

Importantly, in addition to the limitations modelled
by feasible state- and control-spaces X and U, the robot
is subject to a dynamic feasibility constraint:

ut ∈ D(xt, ẋt). (2)

This can model a variety of constraints ranging from sim-
ple ones such as turning radius and acceleration limits
in a bicycle model, to complex ones such as slip pre-
vention for off-road operation. In addition to dynamic
constraints, the robot operates in an environment with
obstacles to avoid, denoted by O ⊂ X.

We are given a desired path Xd = xd
t . . .x

d
t+T from a

higher-level planner that may not be collision-free due
to factors such as a slow update rate. The overall aim
of this paper is to plan a minimum-time path X that
satisfies the desired path Xd while avoiding collisions
and respecting the dynamic feasibility constraint:

min
X

travel time

s.t. dynamics (1),

dynamic feasibility (2),

X ∩ O = ∅
X visits Xd

(3)

The main challenge in solving (3) is the dynamic feasi-
bility constraint (2). The set of available control actions
depends on the state, which introduces significant com-
plications because states are also dependent on control
actions. Despite such co-dependence, the planner must
be robust against inaccuracies or even a lack of a model
of the dynamic feasibility constraint (2), as may be the
case for practical robots.

4 Adaptive Trajectory Library Planner

We introduce the ATL planner as an approximate solver
for (3). This approach begins with precomputing an of-
fline library of dynamically feasible trajectories as de-
scribed in Section 4.1. The planner leverages this library

to rapidly find the best collision-free path during oper-
ation as described in Section 4.2. The retrieval of tra-
jectories adapts to the current state to ensure dynamic
feasibility. Section 4.3 outlines some particular consid-
erations when implementing the planner on a robotic
platform.

4.1 Offline Library Construction

We define the offline library T as a set of collections
C, where each collection is a tuple C = (FC ,XC ,UC)
comprising a feasible region FC ⊂ X, a finite set of state
trajectories XC , and a finite set of control actions UC .
If the robot is in the feasible region FC of collection
C, then all control actions in the control set UC are
feasible. Each trajectory in the trajectory set Xi ∈ XC

corresponds to a single control action uC
i ∈ UC .

To construct T , we first sample a range of control
actions UC from a pre-defined configuration for each
collection C. The trajectory set XC is then obtained
by simulating each control action ui for a pre-defined
amount of time T using the dynamic model (1). The
trajectories are in the egocentric frame of the robot so
that they are independent of its pose.

To construct the feasible region FC , a possible ap-
proach is to invert a suitable model for the dynamic fea-
sibility constraint (2) as:

FC =
⋂

u∈UC

{(x, ẋ) | u ∈ D(x, ẋ)}. (4)

However, the merit of ATL is that such a model need
not be explicitly constructed. Rather, control actions
may be tested at different states in simulations and hard-
ware trials with diverse configurations and environmen-
tal conditions. Similarly, a first-principles model may be
adjusted through experimentation.

One important adjustment required is to define a col-
lection with an unbounded feasible region. The pur-
pose is to ensure that for all states in the state space
X, there exists at least one feasible collection. This can
be achieved by, for example, specifying a range of con-
trol actions available when the robot speed is beyond a
certain limit.

4.2 Online Planning

Using a trajectory library T constructed offline, the on-
line planning stage identifies the best collision-free tra-
jectory X = x1 . . .xT over a short time horizon T that
is both dynamically feasible and the closest to the next
goal xd ∈ Xd. Formally, the planning algorithm solves

Algorithm 1 ATL Planner at time t

Inputs: Current state xt, desired path Xd, obstacles O
Outputs: Best control action u⋆

t .

▷ Initialise estimated best cost and control actions
1: J⋆, u⋆

t ←∞,NULL

▷ Iterate over collections
2: for all collections (FC ,XC ,UC) ∈ T do

▷ Skip collection if infeasible for current state
3: if xt /∈ FC then skip current collection

▷ If feasible, iterate over trajectories
4: for all trajectories in collection XC

i ∈ XC do

▷ Skip trajectory if in collision
5: if XC

i ∩ O ≠ ∅ then skip current trajectory

▷ Compute cost of trajectory. If better, save.
6: if J(XC

i ,x
d) ≤ J⋆ then

7: J⋆, u⋆
t ← J(XC

i ,x
d), uC

i

8: return u⋆
t

the following problem at each time t:

min
U

J(X,xd) ≡ ||xT − xd||,

s.t. dynamics (1),

dynamic feasibility (2),

X ∩ O = ∅.

(5)

The process for solving (5) using the library T is out-
lined in Algorithm 1, and illustrated in Figure 1. The on-
line planning algorithm takes as input the current state
xt, the desired path Xd, and any obstacles O, and out-
puts the best control action u⋆

t for the current time.
The algorithm maintains an estimate of the current

best cost J⋆ and current best control action u⋆
t , which

are initialised as∞ and a null action respectively (Algo-
rithm 1, line 1). We then loop over all trajectories in all
collections (Algorithm 1, lines 2 and 4) while skipping
dynamically infeasible collections (Algorithm 1, line 3)
and trajectories that result in collision (Algorithm 1,
line 5). Computation time is reduced owing to such skip-
ping because the cost function is only evaluated for tra-
jectories that are dynamically feasible and collision-free,
and collision-checking is only performed if dynamically
feasible. During collision checking of a single trajectory,
points along it are sampled in turn from that which is
closest to the robot. As soon as a point is found that is
coincident with an obstacle, the trajectory is discarded
without evaluating any additional points, further reduc-
ing computation time. The estimate of best cost and
control action is updated if the current cost J(XC

i ,x
d)

is lower than the estimate J⋆ (Alg. 1, line 6). After

exhausting the trajectories in all collections, the best
control action u⋆

t is returned.
The algorithm may return aNULL control action if all

trajectories fail collision checking. This implies that all
dynamically feasible trajectories given the current state
will lead to a collision. In this case, a safety behaviour
must be triggered. For ground robots, for example, we
found stopping at the current position with zero velocity
to be a suitable safety behaviour: this is not only because
it is safe to do so, but also because the dynamically fea-
sible trajectories when the robot has zero velocity are
shorter in length than when moving at speed, and hence
more amenable to escaping the obstacles. Meanwhile,
the dynamic feasibility check in Algorithm 1, line 3 does
not cause a NULL return as long as the feasible sets
span the entire state space (i.e.

⋃
C FC = X).

4.3 Considerations for Implementation

Reference Frame

The trajectories in the offline library T are stored in
the egocentric frame of the robot to obviate the need
for simulating control actions at runtime. However, the
desired path Xd from the higher-level planner will be
typically specified in the global static frame. It is rec-
ommended to store the offline trajectories and desired
path in this manner as converting Xd to the egocentric
frame of the robot when evaluating the cost function will
be less computationally expensive than converting each
trajectory into the global static frame.

Obstacle Representation

For practical implementation, we recommend maintain-
ing an independent obstacle representation from that of
the higher-level planners. This is because ATL plans
over a smaller spatial scale and at much greater fre-
quency compared to typical high-level planners. Two
criteria are important for selecting a suitable obstacle
representation, which are update time and availability
of egocentric operation. In other words, it should be
possible to update the obstacle representation quickly,
and the obstacle representation should naturally sup-
port the egocentric frame as its reference. We found
that 2D occupancy grid [Thrun, 2003] implemented in
costmap 2d [Marder-Eppstein et al., 2023] fits these two
criteria well.

5 Experiments

We experimentally demonstrate the effectiveness of our
approach in both simulation and field trials. These ex-
periments were conducted using a platform called the
Fast Off-Road Vehicle (FORV), developed at the Uni-
versity of Technology Sydney (Figure 2). FORV mea-
sures 2.4m × 2m × 2m with a maximum design weight
of 400 kg, and drives in a skid-steer configuration where

each pair of wheels on each side are given the same com-
mand velocity. The design enables high-speed traver-
sal of challenging off-road terrains, while containing
desktop-level computing hardware to allow complex con-
trol and planning algorithms to run at high frequencies.
The software is built using ROS Noetic to create a mod-
ular architecture that can be extended for different ap-
plications.

5.1 ATL Implementation

Our ATL planner is implemented using the standard
ROS Navigation stack. The trajectory library is de-
scribed by the user in a YAML file loaded at runtime.
The library consists of collections with forward veloc-
ity v ∈ {1, 1.5, 2, 3, 4} m/s and angular velocity ω °/s,
where:

ω ∈

[−10, 10] step 2, v = 1

[−12, 12] step 3, v = 1.5

[−20, 20] step 4, v = 2

[−28, 28] step 4, v = 3

[−36, 36] step 9, v = 4

[−50, 50] step 10, v = 5

These values were chosen through empirical observations
of FORV driving around a testing environment. The al-
lowable ω is increased at greater v as we have observed
that the skid steer dynamics of FORV allow it to perform
tighter turns when travelling at higher speeds. Each tra-
jectory is simulated for 5 s with points sampled at inter-
vals of 0.2 s along it to determine whether it results in
collision and to evaluate the cost function. Trajecto-
ries are deemed to be dynamically feasible at time t if
(vt − 3) ≤ v ≤ (vt +3) and (ωt − 115) ≤ ω ≤ (ωt +115),
where vt and ωt are the linear and angular velocity of
the robot at time t respectively.

5.2 Simulation Experiment

Simulation Setup

The ATL planner was first evaluated in simulation to
determine its suitability for high speed operation in out-
door environments. Simulations were run in Gazebo, a
popular simulation package in the robotics community
that enables accurate modelling of complex real-world
scenarios. The simulated FORV was loaded into a ter-
rain based off that provided in the NEGS-UGV Dataset
[Sánchez et al., 2022]. The environment measures 100 m
× 50 m, and consists of a flat surface with obstacles such
as trees, benches, and street lamps distributed through-
out (Figure 3). The spacing between obstacles was cho-
sen to provide both open spaces and areas where the
robot would be required to negotiate tight gaps. In order
to examine the performance of the planners independent
of other factors, the robot obtains its location directly
from Gazebo instead of relying on internal odometry,

40 20 0 20 40
x position (m)

20

10

0

10

20
y

po
si

tio
n

(m
)

Planner
ATL
DWA
TEB

Figure 4: Simulation results for the ATL, DWA, and TEB planners. In each trial, the robot starts in the top right,
and moves through the waypoints shown in red, where the circle indicates the acceptance radius. Trajectories followed
by FORV under each planner are shown in blue and orange, with different trials indicated by different saturations.
White crosses indicate locations where trials ended early due to failure.

and a static costmap was generated from the terrain of-
fline using the costmap 2d package [Marder-Eppstein et
al., 2023].
FORV was initialised near the top right corner of the

simulated environment, and provided with several or-
dered waypoints to visit; waypoints were marked as vis-
ited when the robot reached a location within 3 m of
them. In addition to our ATL planner, we implemented
DWA and TEB planners to evaluate our method against
using the dwa local planner and teb local planner

packages respectively [Marder-Eppstein, 2023; Rösmann,
2023]. Five simulations were performed for each planner,
and the paths followed by FORV were recorded for later
analysis.

Results

The paths followed by FORV in each trial are plotted in
Figure 4, and summarised in Table 1. It can be seen that
our ATL planner performs favourable compared to the
DWA and TEB planners. Our method produces paths
that are significantly shorter than DWA and similar in
length to TEB, and these paths are followed quicker than
those produced by either existing planner. ATL and
TEB produce smooth paths with wide corners that can
be traversed at high speed, while DWA often selects tight
or on-the-spot turns, which reduces the linear speed the
robot is able to move at. We have also observed that

the real FORV is unable to perform such tight cornering
manoeuvres, reducing the applicability of this planner
on our chosen platform.

The success rate achieved by each planner is another
important consideration. Trials can fail when the plan-
ner is unable to generate control commands, the robot
collides with an obstacle, or the robot becomes immo-
bilised due to its footprint overlapping with an obsta-
cle zone within the costmap. All five trials of the ATL
and DWA planners succeeded, but two trials of the TEB
planner failed. In proximity to densely populated ob-
stacle areas, TEB generated inefficient commands, of-
ten outputting large angular velocities. This tendency
caused the robot to oscillate around obstacles in an at-
tempt to find a viable path through the area, eventu-
ally driving it into occupied regions of the costmap from
which it could not recover.

The planners perform relatively consistently during
successful trials, moving through similar trajectories.
Occasionally, obstacles would be passed on the opposite
side to what was usually selected by that planner, but
the paths would soon converge again. This can lead to
a ripple effect, where passing one obstacle on a different
side results in a longer path overall as further obstacles
must be avoided while obeying dynamic feasibility con-
straints before returning to the usual path.

Planner
Travel
time (s)

Path
length (m)

Planning
time (ms)

ATL 90 205 26
DWA 569 339 198
TEB 170 197 19

Table 1: Simulation results for the ATL, DWA, and TEB
planners. Values given are the mean values across mul-
tiple trials.

In addition to the metrics relating to the paths pro-
duced, the computational cost of each planner was also
compared. We measured the time taken to calculate the
velocity commands at each planning instant, and found
the average planning time of our ATL planner was signif-
icantly lower than DWA but slightly higher than TEB.
This shows the low computational cost of our method in
producing successful paths, which lends itself to the fast
planning required for robots travelling at high speeds.

5.3 Field Experiments

Hardware Setup

Our ATL planner was also tested on the physical FORV
platform to evaluate its real-world performance. Broadly
the same software was run on the real robot as in
simulation, however it was not possible to isolate the
performance of the planner from the localisation and
costmap generation. In real-world experiments, the
robot calculates its position by fusing data from mo-
tor encoders, an inertial measurement unit, and GPS
using the robot localization package for ROS [Moore
and Stouch, 2014]. Similarly a static costmap cannot be
used, and instead a live costmap is generated from lidar
data.

We conducted a field trial at Sydney Science Park
during which two experiments were performed. In each
experiment, FORV began near a selection of obstacles
including trees and a dummy human. FORV was in-
structed to move through two waypoints with a tolerance
of 3 m then stop. Two experiments were performed,
varying the starting position and orientation of FORV
with respect to the obstacles as well as the position of
the waypoints to determine the performance of the plan-
ner in different scenarios.

Results

Results from the field trial are shown in Figure 5. In
the first experiment (Figure 5a), FORV was positioned
a short distance from a tree and oriented directly towards
it. A waypoint was placed directly behind this tree, such
that FORV would have to immediately avoid an obsta-
cle. Another waypoint was placed a short distance away
to direct FORV to turn and avoid two further obsta-
cles. The ATL planner performed well in this scenario,

avoiding all obstacles and moving through a smooth path
without sharp turns that would reduce its linear velocity.
The robot travelled 96 m in 33 s, achieving an average
linear speed of 2.9 m/s.

The second experiment considered a more challenging
scenario (Figure 5b). FORV was initially aligned point-
ing directly down a row of obstacles, and waypoints were
selected to direct the robot to slalom between them. This
was achieved without any collisions, demonstrating the
impressive obstacle avoidance capabilities of the planner
even when operating at relatively high speeds. In this
trial, the robot travelled 136 m in 28 s, so moved with
a higher average linear speed than the previous trial of
4.9 m/s.

6 Conclusion

This paper has presented ATL, a novel local path plan-
ning algorithm suitable for robots travelling at high
speeds. The approach reduces online computation by
using a precomputed trajectory library, an adaptive sub-
set of which is sampled from to reflect trajectories that
are dynamically feasible given the current state of the
robot. These sampled trajectories are simulated to find
the most suitable collision-free trajectory at each instant.

The planner was first evaluated in simulation, and
found to perform favourably compared to the existing
DWA planner. We also tested the planner in field trails,
where it showed good performance in two scenarios,
reaching goal locations quickly and without collision.

In future, we will investigate how the trajectory library
can be further adapted to encapsulate more real-world
constraints. In particular, the dynamics of the robot
are dependent on the terrain, so the library could be
expanded to allow for trajectories to vary as the robot
moves across different surfaces. We also intend to incor-
porate ATL with a global planner that generates suitable
sparse waypoints to demonstrate autonomous navigation
across a larger area.

Acknowledgements

We would like to thank the UTS MMR technical team
for hardware and field trial support. This work was
supported in part by the Trusted Autonomous Systems
D-CRC.

References

[Best et al., 2023] Graeme Best, Rohit Garg, John
Keller, Geoffrey A. Hollinger, and Sebastian Scherer.
Multi-robot, multi-sensor exploration of multifarious
environments with full mission aerial autonomy. In-
ternational Journal of Robotics Research, 2023.

[Campbell, 2007] Stefan Forrest Campbell. Steering
control of an autonomous ground vehicle with appli-

(a)

(b)

Figure 5: Real-world experimental results. Waypoints are shown in red, where the circle indicates the acceptance
radius. The trajectories followed by FORV are plotted in blue. FORV is shown at several points equally spaced in
time (5.5 s in (a) and 6.6 s in (b)). At each of these points, the current feasible trajectories (orange) and the selected
path (thick orange) are also visualised.

cation to the DARPA urban challenge. PhD thesis,
Massachusetts Institute of Technology, 2007.

[Chu et al., 2012] Keonyup Chu, Minchae Lee, and My-
oungho Sunwoo. Local path planning for off-road au-
tonomous driving with avoidance of static obstacles.
IEEE Transactions on Intelligent Transportation Sys-
tems, 13(4):1599–1616, 2012.

[Coulter, 1992] R Craig Coulter. Implementation of the
pure pursuit path tracking algorithm. Carnegie Mellon
University, The Robotics Institute, 1992.

[Dijkstra, 1959] E W Dijkstra. A note on two problems
in connexion with graphs. Numerische Mathematik,
1:269–271, 1959.

[Fox et al., 1997] Dieter Fox, Wolfram Burgard, and Se-
bastian Thrun. The dynamic window approach to col-
lision avoidance. IEEE Robotics & Automation Mag-
azine, 4(1):23–33, 1997.

[Goswami, 2017] Angshuman Goswami. Hierarchical
Off-Road Path Planning and Its Validation Using a

Scaled Autonomous Car. PhD thesis, Clemson Uni-
versity, 2017.

[Hart et al., 1968] Peter E Hart, Nils J Nilsson, and
Bertram Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Trans-
actions on Systems Science and Cybernetics, 4(2):100–
107, 1968.

[Janson et al., 2015] Lucas Janson, Edward Schmerling,
Ashley Clark, and Marco Pavone. Fast marching tree:
A fast marching sampling-based method for optimal
motion planning in many dimensions. International
Journal of Robotics Research, 34(7):883–921, 2015.

[Karur et al., 2021] Karthik Karur, Nitin Sharma,
Chinmay Dharmatti, and Joshua E Siegel. A survey
of path planning algorithms for mobile robots.
Vehicles, 3(3):448–468, 2021.

[Kavraki et al., 1996] Lydia E Kavraki, Petr Svestka, J-
C Latombe, and Mark H Overmars. Probabilistic
roadmaps for path planning in high-dimensional con-
figuration spaces. IEEE Transactions on Robotics and
Automation, 12(4):566–580, 1996.

[Khatib, 1986] Oussama Khatib. Real-time obstacle
avoidance for manipulators and mobile robots. In-
ternational Journal of Robotics Research, 5(1):90–98,
1986.

[LaValle and Kuffner Jr, 2001] Steven M LaValle and
James J Kuffner Jr. Randomized kinodynamic plan-
ning. International Journal of Robotics Research,
20(5):378–400, 2001.

[Lee et al., 2014] James Ju Heon Lee, Kris Frey, Robert
Fitch, and Salah Sukkarieh. Fast path planning for
precision weeding. In Proc. of Australasian Conference
on Robotics and Automation (ACRA), 2014.

[Likhachev and Ferguson, 2009] Maxim Likhachev and
Dave Ferguson. Planning long dynamically feasible
maneuvers for autonomous vehicles. International
Journal of Robotics Research, 28(8):933–945, 2009.

[Macenski et al., 2023] Steve Macenski, Shrijit Singh,
Francisco Mart́ın, and Jonatan Ginés. Regulated pure
pursuit for robot path tracking. Autonomous Robots,
pages 685–694, 2023.

[Marder-Eppstein et al., 2023] Eitan Marder-Eppstein,
David V. Lu, and Dave Hershberger. costmap 2d,
2023. http://wiki.ros.org/costmap_2d.

[Marder-Eppstein, 2023] Eitan Marder-Eppstein.
dwa local planner, 2023. http://wiki.ros.org/

dwa_local_planner.

[Moore and Stouch, 2014] T. Moore and D. Stouch. A
generalized extended Kalman filter implementation
for the robot operating system. In Proc. of Interna-
tional Conference on Intelligent Autonomous Systems
(IAS). Springer, July 2014.

[Rösmann et al., 2012] Christoph Rösmann, Wendelin
Feiten, Thomas Wösch, Frank Hoffmann, and Torsten
Bertram. Trajectory modification considering dy-
namic constraints of autonomous robots. In Proc. of
German Conference on Robotics, 2012.

[Rösmann et al., 2017] Christoph Rösmann, Frank
Hoffmann, and Torsten Bertram. Integrated online
trajectory planning and optimization in distinctive
topologies. Robotics and Autonomous Systems,
88:142–153, 2017.

[Rösmann, 2023] Christoph Rösmann.
teb local planner, 2023. https://wiki.ros.org/

teb_local_planner.

[Sánchez et al., 2022] Manuel Sánchez, Jesús Morales,
Jorge L Mart́ınez, JJ Fernández-Lozano, and Alfonso
Garćıa-Cerezo. Automatically annotated dataset of
a ground mobile robot in natural environments via
gazebo simulations. Sensors, 22(15):5599, 2022.

[Stentz, 1994] Anthony Stentz. Optimal and efficient
path planning for partially-known environments. In
Proc. of IEEE International Conference on Robotics
and Automation (ICRA), pages 3310–3317, 1994.

[Thrun, 2003] Sebastian Thrun. Learning occupancy
grid maps with forward sensor models. Autonomous
Robots, 15:111–127, 2003.

[You et al., 2020] Alexander You, Fouad Sukkar, Robert
Fitch, Manoj Karkee, and Joseph R Davidson. An effi-
cient planning and control framework for pruning fruit
trees. In Proc. of IEEE International Conference on
Robotics and Automation (ICRA), pages 3930–3936,
2020.

