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A B S T R A C T   

There are emerging concerns about the Fairness, Accountability, Transparency, and Ethics (FATE) of educational 
interventions supported by the use of Artificial Intelligence (AI) algorithms. One of the emerging methods for 
increasing trust in AI systems is to use eXplainable AI (XAI), which promotes the use of methods that produce 
transparent explanations and reasons for decisions AI systems make. Considering the existing literature on XAI, 
this paper argues that XAI in education has commonalities with the broader use of AI but also has distinctive 
needs. Accordingly, we first present a framework, referred to as XAI-ED, that considers six key aspects in relation 
to explainability for studying, designing and developing educational AI tools. These key aspects focus on the 
stakeholders, benefits, approaches for presenting explanations, widely used classes of AI models, human-centred 
designs of the AI interfaces and potential pitfalls of providing explanations within education. We then present 
four comprehensive case studies that illustrate the application of XAI-ED in four different educational AI tools. 
The paper concludes by discussing opportunities, challenges and future research needs for the effective incor
poration of XAI in education.   

1. Introduction 

Artificial intelligence (AI) has a large and increasing role in educa
tion. One important case is of personalised teaching systems which are 
already well established, with growing evidence of their effectiveness 
for improving learning (VanLehn, 2011; Kulik & Fletcher, 2016; 
Steenbergen-Hu & Cooper, 2014, 2013; Ma, Adesope, Nesbit, & Liu, 
2014; du Boulay, 2016). AI in education (AIED) systems may also make 
diverse and sophisticated use of AI to create the interface that is so 
important for the learning experience. For example, the interface may 
use natural language processing and generation, speech interfaces, av
atars, video analysis of the learner to judge their attention and emotion 
(see Fig. 12). 

These systems collect data about learners as they use the system. This 
may be collected from the interaction with the teaching interface as part 
of learning activities, while other more recent systems collect data 

beyond keyboard/mouse/screen actions, for example, from cameras, 
microphones and wearable devices. Learners may be more or less aware 
of the nature of the data being collected. European legislation in the 
General Data Protection Regulation (GDPR)1 has led the world in cod
ifying societal values around the governance of data and its use, 
reflecting a growing concern that people should be in control of tech
nology and its use of their data (Knijnenburg et al., 2022; Wang, Yang, 
Abdul, & Lim, 2019; Wang et al., 2019). This means that learners should 
be able to determine how AI works, how that may affect them, and 
whether it is trustworthy (Drachsler & Greller, 2016; Holmes et al., 
2021). It follows that AIED systems are one important context for the 
need for eXplainable AI (XAI). 

While the role and need for XAI in education shares much in common 
with broader uses of AI (including accountability for accuracy, fairness 
and privacy management), education has distinctive needs for XAI and 
the nature of its data poses distinctive challenges. In particular, learning 

* Corresponding author. 
E-mail address: h.khosravi@uq.edu.au (H. Khosravi).   

1 https://gdpr-info.eu, visited March 2022. 

Contents lists available at ScienceDirect 

Computers and Education: Artificial Intelligence 

journal homepage: www.sciencedirect.com/journal/computers-and-education-artificial-intelligence 

https://doi.org/10.1016/j.caeai.2022.100074 
Received 1 August 2021; Received in revised form 20 March 2022; Accepted 20 April 2022   

mailto:h.khosravi@uq.edu.au
https://gdpr-info.eu
www.sciencedirect.com/science/journal/2666920X
https://www.sciencedirect.com/journal/computers-and-education-artificial-intelligence
https://doi.org/10.1016/j.caeai.2022.100074
https://doi.org/10.1016/j.caeai.2022.100074
https://doi.org/10.1016/j.caeai.2022.100074
http://crossmark.crossref.org/dialog/?doi=10.1016/j.caeai.2022.100074&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computers and Education: Artificial Intelligence 3 (2022) 100074

2

data has many sources of noise, and reasoning about such data is noisy at 
many levels (Kahneman, Sibony, & Sunstein, 2021). A significant body 
of work emphasises the importance of giving learners agency and re
sponsibility for their own learning (Berger, Rugen, Woodfin, & Educa
tion, 2014; Winne, 1995), and in this context, XAI has the potential to 
assist (Kay, 2001), with some learning tools harnessing data to create 
interfaces that support the learner’s metacognitive processes of 
self-monitoring, reflection and planning (Bull, 2020; Bull & Kay, 2013). 
There are also well-known phenomena that are of particular importance 
for education, such as the ways that a flawed AI system may introduce 
misconceptions or encourage students to game a system (Baker et al., 
2009). 

This paper tackles the particular challenges and mechanisms for XAI 
in education. It makes three main contributions. Firstly, in Section 3, we 
present the XAI in Education (XAI-ED) framework, that draws on the 
fields of AI, Human-Computer Interaction and the Cognitive and 
Learning Sciences. XAI-ED characterises the nature of XAI in Education 
in terms of questions about six key aspects: the people involved (stake
holders) and the benefits to each group; how to deliver the explanation; the 
widely used classes of models used in education; the human-centred design of 
the AI and interfaces to support explanation; and the potential pitfalls of 
providing explanations. The second contribution is a set of four case 
studies, presented in Section 4. These illustrate the importance of 
explainability in state-of-the art examples with reference to XAI-ED. The 
third contribution in Section 5 articulates a list of opportunities, chal
lenges and future research needs for advancing XAI and its effective 
incorporation in education. 

2. Background 

This section provides an overview of the XAI literature and its as
sociation with education. Section 2.1 begins by considering how the 
AIED field is responding to the broad challenges of FATE. Section 2.2 
reviews the current landscape of XAI. Section 2.3 provides an overview 
of the importance of explanations in human-human interactions in the 
context of education. Section 2.4 provides an overview of the work on 
open learner models (OLMs), which is arguably the most well- 
established application of explanations in human-machine interactions 
and XAI in education. 

2.1. The FATE of AI in education 

A range of analyses are now appearing in the literature, which pro
vide conceptual frameworks for understanding the challenge of FATE for 
AIED. In a commentary on the field, Holmes et al. (2021) surveyed AIED 
researchers on their perceptions of the challenge of FATE, from which 
they distill a set of thematic challenges for the community. In more 
technical detail, Kizilcec and Lee (2022) present an incisive introduction 
to, and analysis of, the concept of algorithmic ”fairness” in education, 
using the three key steps of “measurement (data input), model learning 
(algorithm), and action (presentation or use of output)” to illustrate 
where this can break down. Focusing specifically on machine 
learning-based AIED, Baker and Hawn (2021) develop a more detailed 
taxonomy that summarises the various sources of algorithmic bias, and 
how they can be mitigated in terms of “a framework for moving from 
unknown bias to known bias and from fairness to equity”. We also refer 
the reader to the recently edited collection by Porayska-Pomsta, Woolf, 
Holmes, and Holstein (2021), and the forthcoming volume by Holmes & 
Porayska-Pomsta, (In Press). 

To illustrate the kinds of biases that have been studied, we introduce 
a few examples. It is known that when modelling students’ learning 
performance and identifying at-risk students, AI techniques may provide 
more accurate predictions for a group of students than the others simply 
based on the different demographic attributes of the students, e.g., fe
male vs. male (Gardner, Brooks, & Baker, 2019). The authors propose 
that the differential prediction accuracy between different groups of 

students can be quantified by using a metric called Absolute 
Between-ROC Area (ABROCA) to measure the unfairness of a predictive 
model. With ABROCA, Gardner et al. (2019) evaluated the unfairness 
displayed by five AI models used to predict to what extent students in 
massive open online courses were likely to accomplish their studies. 
Similarly, Hutt, Gardner, Duckworth, and D’Mello (2019) assessed the 
unfairness of models predicting on-time graduation based on the data 
provided by students in the setting of college applications. A very 
different form of analysis by Sha et al. (2021) reported that AI models 
may be unfair to students when characterizing their posts in discussion 
forums. For instance, the posts by English-as-first-language students 
were more likely to be accurately classified than those made by 
non-native English speakers. 

To summarise, FATE covers an extremely broad range of concerns, to 
which the AIED field is developing a range of responses. A powerful form 
of mitigation that is often referred in FATE literature is explainability, 
and it is to this intriguing concept that we now turn our attention. 

2.2. Explainable AI 

One of the emerging methods for increasing trust in AI systems is to 
use XAI, which promotes the use of methods that “enable human users to 
understand, appropriately trust, and effectively manage the emerging 
generation of artificially intelligent partners” (Gunning, 2017). The 
initial focus of XAI was predominantly algorithm-centred. At a high 
level, machine learning models can be categorised based on their level of 
interpretability, which can be defined as the degree to which a human 
can understand the cause of a decision or be able to exactly reproduce 
what the model does (Miller, 2019). As a design criterion, having models 
with high interpretability is desirable since in principle, this can help 
mitigate against partiality in decision-making (detecting and correcting 
various forms of bias), increase robustness against adversarial pertur
bations (noise added to the input to fool the system while being 
quasi-imperceptible for humans (Moosavi-Dezfooli, Fawzi, Fawzi, & 
Frossard, 2017)) that could change the prediction, and improve the 
employment of meaningful variables and truthful causality in the model 
reasoning (Arrieta et al., 2020). Some models such as general additive 
models, rule-based models and decision trees, due to their relatively 
simple structure, are considered interpretable by design, making it easy 
to explain how these models work. For example in the case of a simple 
decision tree, the rules can be explained to a human such that they 
understand and have the ability to reproduce the decision made by the 
model. In contrast, some models such as tree ensembles, support vector 
machines and deep neural networks have complex structures that are 
not readily interpretable. To make these models explainable to humans, 
there has been extensive work in the XAI research community on 
developing post-hoc explainability techniques, which aim to explain 
how a model produces its predictions without elucidating the structure 
of the model (Lipton, 2018) (See Section 3.2 for some examples). 

Recent advances in XAI have seen a shift and a developmental step 
towards socially-situated XAI by introducing and exploring a socio- 
technically informed perspective that incorporates the socio- 
organizational context into explaining AI-mediated decision-making 
(Ehsan, Liao, Muller, Riedl, & Weisz, 2021). This shift has leveraged 
insights from the social sciences where an explanation is seen not just as 
a product, but as a process that requires social interactions and a 
knowledge transfer process from an explainer to an explained (Miller, 
2019). Srinivasan and Chander (2020) offer a helpful review of types of 
explanations from a cognitive science perspective, including trust, trou
bleshooting or design, education, action, justification, aesthetics, and 
communication as key aims in explanation. They note that in deciding 
what kind of explanation to give, the specific stakeholder and task 
should be considered, highlighting the need for human-centred ap
proaches to generating explanations. The shift has therefore benefited 
from user-centred approaches and methodologies from the HCI com
munity, which have demonstrated that a range of XAI techniques were 
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not as effective as assumed in assisting in sensemaking (Alqaraawi, 
Schuessler, Weiβ, Costanza, & Berthouze, 2020), enhancing user trust 
(Yang, Huang, Scholtz, & Arendt, 2020), or enabling actionable decisions 
(Liao, Gruen, & Miller, 2020). These views suggest that XAI in education 
needs to be sensitive to the learning context and consider the different 
actors in a learning community as potential audiences. 

2.3. Explanations in education 

Explanations in educational contexts come in diverse forms 
depending on the stakeholders and their particular aims or tasks. The 
need for explanations arises since educators must be accountable (e.g. to 
students, parents, or the government); when providing individual 
feedback to students; in giving teachers diagnostic feedback to under
stand where a class of students needs increased focus; and in parental 
consultations to help them support their child’s learning. 

In particular, feedback for students and teachers are a form of 
explanation in education that is key to educational outcomes. For stu
dents, the most common forms of explanations are provided by teachers 
regarding student performance on particular tasks, suggestions to 
improve, prompts for self-monitoring and directing, and affect-level 
comments (Hattie & Timperley, 2007). The main purposes of this type 
of feedback are to scaffold learning including the development of 
domain knowledge, self-regulated skills, and a sense of being. Moreover, 
feedback for students is seen as a relational process through which 
teachers may encourage positive motivation and help learners build 
confidence and self-esteem (Price, Handley, Millar, & O’donovan, 2010; 
Nicol & Macfarlane-Dick, 2006). 

For teachers, feedback tends to serve the purpose of assessing the 
effectiveness of teaching approaches, learning design, and areas of 
support (particular) students may need. Common materials that may aid 
teaching reflections include grade distribution of students, class 
engagement (e.g., attendance), student surveys, parent-teacher com
munications, and peer evaluation. Feedback for teachers is crucial to the 
scholarship of teaching (Boyer, 1990), which positions teachers as 
learners who, through reflections on the feedback, construct instruc
tional knowledge (e.g., instructional design), pedagogical knowledge (e. 
g., knowing how students learn), and curricular knowledge (e.g., ra
tionales of curriculum design) (Kreber, 2005) that together allow 
teachers to perform effective teaching. 

Another form of explanation that is important to the operation of an 
educational entity, and its ongoing improvement, involves the use of 
data to present an overall profile and performance of an institution, e.g., 
student enrolment data, academic performance (e.g., teaching & 
research quality), staff profile, performance, and retention, research 
outputs, institution income, teacher-student ratio, and others. Business 
intelligence has been employed broadly to manage and gain insights 
from this form of explanations, which particularly target administrators 
and managers as key audiences (Drake & Walz, 2018). Across these 
contexts, the aim is to support people in decision making, and to develop 
their judgement capacities. 

2.4. Open and scrutable learner models 

A defining feature of AIED has been the personalisation of teaching 
(Self et al., 1999). A driving goal for foundational AIED was to create 
intelligent tutoring systems that could achieve the huge learning bene
fits of an expert one-to-one human tutor (Bloom, 1984). There is still 
huge appeal in creating personalised teaching software that can do this 
at scale. 

Such personalisation is driven by a learner model. This is often 
defined as the machine’s set of beliefs about the learner’s knowledge, 
goals, preferences and other attributes. Some learner models are 
detailed cognitive models. Notable cases are the cognitive tutors 
(Anderson, Corbett, Koedinger, & Pelletier, 1995) which were some of 
the first widely deployed intelligent tutoring systems (Koedinger, 

Anderson, Hadley, Mark et al., 1997) and constraint based tutors 
(Mitrovic, 2003) which were also rigorously evaluated and widely 
deployed (Mitrovic, 2012). Both these have quite complex learner 
models and reasoning about the learner. Many other personalised 
teaching systems have used much simpler, more ad-hoc learner models 
where the system designer determines the set of Knowledge Components 
(KCs) (Koedinger, Corbett, & Perfetti, 2012) to model. Commonly, KCs 
form an ontology, defined by the relationships between them. For 
example, a genetic graph relates KCs in terms of the generalisation, 
correction, and refinement that learners make as they progress (Gold
stein, 1979). Other ontologies have relationships for prerequisites and 
hierarchical structure. The learner model also typically represents the 
value of each KC as a level, such as Bloom (Bloom et al., 1956), SOLO 
(Biggs & Collis, 2014) or a small integer value. As the learner interacts 
with a personalised teaching system, the learning data drives changes in 
the learner model and this, in turn, drives personalised learning. 

In many AIED systems, aspects of the learner model are available to 
the learner via interfaces. Such Open Learner Models (OLMs) typically 
present a view of key KCs so that the student can monitor their learning 
progress. OLMs have been designed for multiple purposes (Bull & Kay, 
2016). From an XAI perspective, some of these purposes are particularly 
important for education. The most important is to achieve improved 
learning outcomes, as demonstrated in work such as (Brusilovsky, 
Somyürek, Guerra, Hosseini, & Zadorozhny, 2015; Long & Aleven, 
2017; Mitrovic & Martin, 2007) and many other examples reviewed in 
(Bull, 2020). A second valuable role for this form of XAI, is as a foun
dation for giving learners greater control and responsibility over their 
learning (Abdi, Khosravi, Sadiq and Gasevic, 2019, 2020). 

One class of open learner models and personalised systems has been 
described as scrutable (Kay, 2006). This are designed so that a learner 
can delve into the way they work by answering questions such as: What 
“raw data” is kept about me? Where does that data come from? How do I 
control this inflow? How do I volunteer data about a KC? Similarly, the 
learner can scrutinise the learner model to answer questions like: What 
is modelled about me? How does the modelling process work? A more 
complete set is available in (Kay & Kummerfeld, 2019). There are two 
main reasons to describe this form of XAI as scrutability. Firstly, scrut
ability acknowledges the real effort needed to scrutinise a system to find 
the answers to such questions. Secondly, in sophisticated systems, even 
after scrutinising, the learner may gain understanding of just some as
pects but this may fall short of the breadth of understanding implied by 
terms like transparency and explainability. 

The unfairness issues witnessed in AI models, beyond question, 
greatly slow down the pace of wide adoption of AI in education, and thus 
calls for more work on XAI in education. In addition to unfairness, it has 
been reported that instructors often lack enough understanding of AI 
and so are concerned about it use (Chounta, Bardone, Raudsep, & 
Pedaste, 2021). This, again, calls for the development of relevant XAI in 
education presentation methods to communicate the prediction results 
with instructors and enhance their perception of AI and support them to 
tackle the challenges they face while using AI for teaching. 

3. The XAI-ED framework 

This section contextualises the use of XAI in education. 
As previously discussed, the role and need for XAI in education has 

much in common with its broader use. Therefore, as shown in Fig. 1, XAI 
in education draws insights and best practices from the fields of AI, 
Human-Computer Interaction and the interdisciplinary and emerging 
field of Human-Centred AI where much of the initial research on XAI has 
been conducted. However, there are also distinctive needs for XAI in 
education that are grounded in theories from cognitive and learning 
sciences. Some of these needs and their applications have been under 
exploration in the interdisciplinary and emerging fields of AI in educa
tion and learning analytics. 

Drawing insights from these related fields, this section characterises 
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the nature of XAI in education in the XAI-ED framework that responds to 
fundamental questions about six key aspects. Section 3.1 presents an 
overview of the main stakeholders in education and how they may 
benefit from XAI in their roles and responsibilities. Section 3.2 presents 
some common approaches for presenting explanations in education. 
Section 3.3 presents some representative and widely used classes of 
models for implementing XAI in education. Section 3.4 discusses points 
for consideration in a human-centred design of the AI and interfaces to 
support explanation. Finally, Section 3.5 presents common pitfalls and 
potential shortcomings of incorporating XAI in education and recom
mendations to avoid them. Fig. 2 visualises the framework and its 
dimensions. 

The XAI-ED aims to provide the means for educational tool de
velopers and researchers to consider these six dimensions and “fill” in 
the parts of the framework for their particular context, which we hope 
can contribute to the development of more effective educational XAI 
systems. 

3.1. Stakeholders and potential benefits 

Much of the research in XAI has been devoted to providing expla
nations to system engineers or data scientists; however human-in-the- 
loop factors are crucial for the enactment of explanations in any given 
context (Srinivasan & Chander, 2020). The particular people seeking 
explanations, their intentions, and the explanations are important to the 
development of understanding of and trust in AI and the decisions AI 
feeds into (Páez, 2019). 

Educational stakeholders include technologists and researchers, 
including learners, parents, teachers, educational administrators and 
policy makers, with each diverse and often different needs. All want 
educational benefits of AI that must also be accountable and trusted. 
Below, we explore some of the potential benefits of XAI for stakeholders 
in education. 

Agency. Explanations of AI can facilitate conversation among these 
different stakeholders, further enabling processes of co-design and value 
co-creation (Dollinger, Liu, Arthars, & Lodge, 2019; Dollinger & Lodge, 
2018). In particular, explanations of AI (including the choice of lan
guage and details to include) should allow students, teachers, and par
ents to see personal relevance (Srinivasan & Chander, 2020), thus 
empowering them to make conscious decisions as to whether or not to 
adopt AI and how to use AI in ways that may optimise values. Having 
functional understanding (Páez, 2019) – being able to interpret a deci
sion made by the AI and the relation between an input and an output – 
will increase the confidence of these stakeholders in AI, and allow them 
to exert agency through AI (Selwyn, 2021), such as reasoning the 
credibility of a recommendation by AI and deciding whether or not to 
act on it. 

Student-teacher interactions. On the other hand, XAI is important 
to facilitate the socio-cultural process of learning where interactions 
between teachers and students are fundamental to guide learners 
through zones of proximal development (Rieber & Carton, 1987). 
Although AI can significantly improve efficiency by automating some 
mundane work of teaching, the social role of teachers in a learning 
process remains unique and not replaceable by AI (Miao, Holmes, 
Huang, & Hui, 2021; Selwyn, 2019). For example, dialogic pedagogies 
(Lyle, 2008), Moore’s theory of transactional distance (Moore, 2013), 
and the community of inquiry model (Garrison, 2016) highlight the 
importance of student-teacher interactions in building a learning com
munity where learners can feel supported and belonging. Explanations 
of AI can prompt dialogue between learners and teachers on insights and 
implications of AI decisions and possibilities of such decisions to be 
challenged and improved, which can also feed back to the AI system for 
further improvement (Moore & Paris, 1992). 

AI literacy. While AI-based innovations, such as learning analytics, 

Fig. 1. Related fields to explainable AI in Education.  

Fig. 2. The XAI-ED framework.  
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open up new ways to understand and support learning, the huge influ
ence (often seen as disruptive) of AI on how people think and act calls for 
a new set of skills important to our navigation in a world of AI - AI lit
eracy. Broadly speaking, AI literacy includes an understanding of what 
AI is, the ability to learn with AI, and the skill to collaborate with AI in a 
world that is increasingly integrated with AI (Miao et al., 2021). Long 
and Magerko (2020) defines AI literacy as a set of 17 competencies that 
enable “individuals to critically evaluate AI technologies; communicate 
and collaborate effectively with AI; and use AI as a tool online, at home, 
and in the workplace” (p. 598). They propose 14 design considerations 
to support AI developers and educators in creating learner-centred AI. 
Among these, explainability is the first to consider when designing an AI 
system, e.g., through the use of graphic visualisations, simulations, ex
planations of agent decision-making process, and iterative demonstra
tions to aid the learner’s understanding of AI. Explainability of AI is also 
important for the development of AI literacy among teachers who play 
an orchestrator role in deciding when and how to best use AI tools to 
support learning in the classroom (Miao et al., 2021). 

Accountability and trust. Motivations behind AI adoption in edu
cation are not purely educational but also socio-political. Higher edu
cation, in particular, faces constant pressure to provide evidence of 
education quality not only for quality assurance, but also to compete 
locally and internationally to attract students, staff, and funding. As a 
result, AI is not only perceived as promising in helping students develop 
essential skills as described above, but also to enhance institutional 
performance in areas such as teaching quality, student progression and 
retention, student satisfaction, graduate employment, and international 
reputation. This political agenda has attracted various parties outside 
the education domain (e.g., think tanks and EdTech industry) to offer 
solutions and shape education futures, resulting in outcries about edu
cation being manipulated by non-education experts (Williamson, 2018). 
In addition to this, several socio-political issues related to the way data is 
sourced, collected, processed, and transformed into seemly arbitrary 
decisions have caused fear and distrust in AI. Prominent issues include 
surveillance, privacy, bias, and context relevance (e.g., educational 
constructs) among others. Learning analytics, for example, were found 
to suffer from trust issues with reasons such as numbers being subjective, 
threat to agency and autonomy, and the design and implementation of 
learning analytics failing to meet needs or negatively affecting student 
well-being (Tsai, Whitelock-Wainwright, & Gašević, 2021). In light of 
the potential danger of AI, UNESCO published Beijing Consensus 
(UNESCO, 2019) outlining 44 recommendations to harness AI in 
education. 

In summary, XAI can be a catalyst for several educational benefits 
and desirable futures of education. It is important to consider whom the 
explanations are for, what the purposes are, and how to effectively 
communicate the explanations to different stakeholders who need 
varying levels of understanding (Páez, 2019) to benefit directly or help 
others benefit from AI. We posit that XAI can play a crucial role in 
enabling collective efforts of various stakeholders to shape desirable 
education futures through responsible, fair, and effective use of AI. In 
particular, XAI needs to communicate algorithmic transparency effec
tively to educational administrators (e.g., institutional leaders and legal 
officers) who may ensure model compliance and downstream implica
tions, to policy makers who are responsible for the governance and 
continuous monitoring of ethical, legal, and desirable use of AI, and to 
teachers who can provide feedback to enhance AI systems based on their 
domain expertise. In this way, XAI can help keeping educational entities 
and service providers accountable and address some trust issues around 
the use of AI, thus realising and scaling the potential benefits. 

3.2. Approaches 

Here we present some of the common approaches to explainability in 
AI that can help various stakeholders gain insights into the details of 
machine learning models. These approaches often rely on simplification 

techniques to generate proxies with reduced complexity. Fig. 3 presents 
an overview of these approaches. 

Approaches to explainability in AI are generally classified according 
to two main criteria: (1) global approaches that explain the entire model 
(approaches a, b, and c) vs. local approaches that explain an individual 
prediction (approaches d, e, and f) and (2) self-explainable models that 
have a single structure (a and d) vs. post-hoc approaches which explain 
how a model produces its predictions without elucidating the structure 
of the model (b, c, e, f) (Arrieta et al., 2020). and chapters 5 and 6 of 
(Molnar, 2019) provide a more detailed view of these common XAI 
approaches. 

Global explanations. This approach focuses on explaining how 
different features/variables affect predictions. Global explanations are 
generally model-specific and work best for models that are interpretable 
by design. The example given in Fig. 3-a illustrates a decision tree that 
can be used to predict the risk level of every student in a class. Many 
teacher-facing systems (e.g. (Lakkaraju et al., 2015)) use global expla
nations to inform instructors of the performance of their students. For 
models that are less interpretable by design, one approach is to imple
ment a global surrogate by learning an interpretable model to approxi
mate the predictions of a black box model. However, this method needs 
to be used with care as the surrogate model may provide an accurate 
representation for one subset of the dataset, but diverge widely for 
another subset. 

Feature relevance. One common XAI approach presents the 
computed relevance, in terms of a score, for each feature in the pre
diction process (as shown in Fig. 3-b. A comparison of the scores among 
different features demonstrates the importance granted by the model to 
each of the features when producing its output. The scores can be 
computed using a variety of models such as linear or logistic regression 
or more recently Shapley values (Shapley, 2016) that take a coalitional 
game theory approach to fairly distribute the “payout” among the fea
tures. The relevance of each feature can be shared by simply reporting 
the scores or visualising them in various graphs. This method has been 
used within predictive learning analytics applications (e.g. (Lakkaraju 
et al., 2015)) to present the importance of each feature in determining 
the “at-riskness” of the learners. 

Example-based. Example-based explainable approaches select 
particular instances to explain the model. A main advantage of these 
explanations is that they are generally model-agnostic and can be used 
to make any machine learning model more interpretable. They can 
provide both local explanations (described below) and global explana
tions. Fig. 3-c illustrates this approach for identifying boundaries of a 
risk model based on students’ midterm grades at a global level. This is 
done by visualising the entire set of instances, highlighting the examples 
and articulating them. 

Local explanations. This approach focuses on explaining a partic
ular instance, independent of what might be happening at the model 
level. Local explanations are only generally model-agnostic; however, 
they work particularly well with rule-based models and decision trees. 
The example in Fig. 3-d illustrates how risk factor for an individual 
student is computed using a interpretable model. Many student-facing 
systems and open learner models (e.g., Abdi et al. (2020)) use local 
explanations to inform students of their progress without overwhelming 
the students about the entire model and system. For models that are less 
interpretable by design, one approach is to implement a series of local 
surrogate models by learning an interpretable model locally around the 
prediction (Ribeiro, Singh, & Guestrin, 2016). 

Comparison. This approach selects particular instances to locally 
explain the outcome of other instances. It is particularly well suited to 
non-parametric models, such as K nearest neighbours, where the model 
structure is determined by the instances. The example in Fig. 3-e com
pares essays of two students with high similarity for academic integrity 
purposes. Many plagiarism detection systems use comparison to show 
the evidence for their prediction (Foltỳnek, Meuschke and Gipp, 2019). 

Counterfactual explanation: This approach generally describes a 
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causal situation in the form: “If X had not occurred, Y would not have 
occurred”. Counterfactual explanations can be used to explain and 
demonstrate the smallest change to the feature values that changes the 
prediction to a predefined output. The example given in Fig. 3-f dem
onstrates the case of two students with similar values across features 
with the exception of their Assignment 1 grade which has led to one 
being categorised at medium risk while the other is categorised as high 
risk. The difference in outcome explains and provides evidence that the 
Assignment 1 grade plays an important part in the student risk model
ling. There are two main challenges associated with counterfactual 
explanation (Molnar, 2019): (1) Identification of instances that provide 
counterfactual explanations can sometimes be a challenging task and (2) 
there may be multiple counterfactual explanations where each tells a 
different “story” of the importance of other features which may come 
across as contradictory or confusing. 

3.3. Models 

In this subsection, we present some representative AI models that are 
commonly used education. Some of the most promising use cases of AI in 
education include adaptive learning systems that tailor instruction 
based on student needs (Aleven, McLaughlin, Glenn, & Koedinger, 
2016), adaptive testing systems that tailor assessment items based on 
students’ mastery (Mills, Potenza, Fremer, & Ward, 2005), learner 
models and in particular open learner models that allow students to 
better regulate their learning (Bull, 2020), automated feedback tools 
that provide instant feedback on students’ academic writing tasks 
(Knight, Abel, et al., 2020; Roscoe & McNamara, 2013) as well as 
intelligent learning analytics dashboards that help teachers with 
sense-making and identifying students in need of attention (Khosravi, 
Shabaninejad, et al., 2021). It should be noted that the majority of the 
examples we identified in the literature incorporated interpretable 

models for explainability rather than using post-hoc explanations 
alongside non-interpretable models. 

Generalized Additive Model (GAM) assumes a linear relationship 
between the dependent variable and independent variables, and at
tempts to predict the value of the dependant variable by aggregating a 
number of smooth functions which take the independent variables as 
input. Given the underlying linear nature of GAM, we can easily verify 
the importance of an independent variable by evaluating how its cor
responding smooth function affects the predicted value. For example, 
Dikaya, Avanesian, Dikiy, Kirik, and Egorova (2021) aimed to depict the 
relationship between the psychological traits of students and their atti
tudes toward remote learning during the COVID-19 pandemic. By using 
GAM, it was illustrated that the interpersonal communicative skills of 
students (e.g., being manipulative or shy) correlated highly with their 
attitudes towards remote learning. Many of the well-established inter
pretable learner models such as Adaptive Factor Models (AFM) (Cen, 
Koedinger, & Junker, 2006) and Performance Factor Analysis (PFA) 
(Pavlik Jr, Cen and Koedinger, 2009) fall into this category. It is worth 
noting that there is a of class learner models that use deep learning such 
as deep knowledge tracing (DKT) (Piech et al., 2015) which are not 
interpretable. 

Decision Trees are one of the most widely-used machine learning 
techniques in the field of learning analytics and educational data min
ing. Different from GAM, decision trees aim to learn a set of decision 
rules, which are organized in a hierarchical tree-like manner, to deter
mine the value of the dependant variable. For instance, when predicting 
students’ competence in collaborative problem solving, Cukurova, 
Zhou, Spikol, and Landolfi (2020) and Pardo et al. (2016) built decision 
trees to provide a set of useful decision rules to capture factors that were 
essential to students’ performance. Due to their hierarchical structure, 
decision trees have been widely regarded as a useful technique to enable 
XAIED. However, if the model has a large number of complex features, 

Fig. 3. Common explainability approaches.  
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the size of decision tree can be very large and incomprehensible to a 
human user. 

Rule-based learning is similar to decision trees and also aims at 
using a set of decision rules to generate predictions (Liu, Gegov, & 
Cocea, 2015). However, the rules are not necessarily structured in a 
hierarchical tree-like manner. The rules can take the form of simple 
conditional statements (e.g., ”if X then Y”) plus more complex combi
nations. For instance, Engin et al. (2014) applied rule-based learning to 
develop two educational expert systems to recommend courses and 
scholarships to students. The prediction accuracy of rule-based learning 
often depends on the coverage (or amount) and the specificity (length) 
of the adopted rules. Rule-based systems can explain their entire chain of 
reasoning, which can be used to generate explanations that an analyst 
can use to diagnose and debug, and which in suitably simplified form 
can be understood by non-technical stakeholders. However, the more 
rules a model uses, the less understandable it becomes to regular 
educational stakeholders; similarly, the specificity of the rules also tends 
to hinder its users from interpreting how it works. 

Clustering methods such as K-means clustering (Krishna & Murty, 
1999) group data points into multiple clusters by calculating their 
similarities with each other, which is often measured based on the dis
tance between these data points. These clusters can be used to reveal and 
explain different data patterns, e.g., exploratory learning behaviours 
specific to different groups of students. For instance, the FUMA frame
work presented in Section 4.2 and Conati, Barral, Putnam, and Rieger 
(2021) incorporate clustering to generate interpretable and personalised 
hints that guide student learning. 

Natural Language Processing has commonly been used for 
detecting potential plagiarism and identifying misconduct cases. For 
instance, Turnitin (Heckler, Rice, & Hobson Bryan, 2013) is a 
well-recognized tool used for plagiarism detection. It works by 
comparing one student submission against an archive of relevant doc
uments (e.g., internet articles and academic publications) and produces 
a report indicating where the text within the submission matches 
another source. This can be viewed by instructors to help determine 
whether it is a plagiarism case or not. It can also be presented to a stu
dent to improve the submission. Batane (2010) demonstrated that, with 
the aid of Turnitin, fewer plagiarism cases occurred in an undergraduate 
class. 

3.4. XAI designs 

Providing appropriate information to help people understand AI can 
be considered a human-AI interaction design challenge (Liao et al., 
2020). Simply opening the algorithmic ‘black box’ is not enough to 
understand the implications of AI in the sociotechnical system at large. 
Some of the most accurate AI models (e.g. deep learning algorithms) are 
very complex and hard even for data scientists to understand (Sejnow
ski, 2020). It is also very challenging for people without formal data 
analysis training to comprehend and trust even simple, rule-based al
gorithms. This is precisely the case for most end-users of data-intensive 
educational innovations (i.e., students and their teachers). In this sub
section, we present some design approaches and areas of research and 
development that can be considered when creating AIED systems. 

User experience (UX) is the process design teams follow to create 
products and systems that provide meaningful and relevant experiences 
to end-users (Hassenzahl & Tractinsky, 2006). User experience itself is 
subjective as it includes people’s perceptions of utility, accessibility, 
efficiency and ease of use about a system. Yet, the design attributes that 
contribute to such user experience are objective. This means that re
searchers and designers can maximise the opportunities for people to 
have an effective experience with a system. UX design is key for the 
development of effective XAI systems. In fact, a recent study demon
strated that effectively designing causability and explanatory cues in AI 
systems help people understand the decision-making process of algo
rithms by bringing transparency and accountability into such systems 

(Shin, 2021). However, designers of AI innovations are facing unique 
challenges that are not present when designing in other contexts. For 
example, UX designers need to collaborate effectively with AI de
velopers to create a joint vision of the ideal impact of the models, their 
evaluation and the technical feasibility in addressing end-user needs 
(Yang, Scuito, Zimmerman, Forlizzi, & Steinfeld, 2018). The current 
reality is that UX design is not always a key component in the devel
opment of AI algorithms. To address this, UX designers need to be 
included in the development cycle of the algorithms to understand the 
capabilities of such algorithms and improve the explainability of the 
system to end-users (Dove, Halskov, Forlizzi, & Zimmerman, 2017). This 
suggests specific AI literacy capabilities that need to be developed along 
with design core knowledge and practices. 

User-centred design (UCD). It is starting to be acknowledged that a 
prerequisite to create effective AI and learning analytics innovations in 
education is to understand the authentic needs of students, educators 
and other educational stakeholders while designing AI innovations 
(Buckingham Shum, Ferguson, & Martinez-Maldonado, 2019), which is 
now establishing itself as an active stream of learning analytics research. 
Yet, it is critical to understand to what extent the voices of these key 
educational stakeholders can influence the design of XAI. From a classic 
bottom-up, UCD perspective, the target user (e.g. teachers or students) is 
an object of study (Sanders & Stappers, 2008). The researcher or 
designer observes or interviews the educational stakeholder, often 
bringing knowledge from theories. Then the person in charge of the 
design receives this knowledge, adds an understanding of the technol
ogy capabilities, and creates a product. In the context of XAIED systems, 
there is no guarantee that the target users will be able to understand the 
XAI explanations. According to UCD, a design needs to provide a 
comprehensible explanation about the AI algorithm or its output, based 
on target users’ needs and capabilities (Xu, 2019). Thus, the same XAI 
version targeted at researchers or developers cannot be the same as that 
targeted at non-expert users. 

Top-down, theory driven design. Top-down guidelines have been 
proposed to help designers choose relevant XAI techniques that may 
work effectively in a certain domain. For example, Arrieta et al. (2020) 
proposed taxonomies of explainability techniques related to specific 
machine learning algorithms which can be used by other researchers 
working with such algorithms. This way, there is no need to deeply 
engage with the user values in making design decisions about XAI. 
Educational theory can provide the necessary foundations to inform the 
design of AIED and learning analytics research and the interpretation of 
its results (Er et al., 2021, pp. 196–206). It may therefore be possible to 
align XAI design guidelines with well-established educational theories to 
effectively design XAI techniques that support explanation and 
reasoning. For example, Wang et al. (2019) drew on educational psy
chology theory to map from conceptualisations about how people reason 
and explain to the ways to design XAI to support such processes. 

Participatory design and co-design are aimed at giving an active 
voice to the end-users. In contrast to seeing end-users as passive objects 
of study, they can have an active role in the design process and they are 
given the position of ‘expert of their own experience’ (Sanders & Stap
pers, 2008). In the development of AIED and learning analytics systems, 
there has been a growing call for considering educational stakeholders 
as equal partners instead of simply conducting consultation or evalua
tion sessions with them (Prieto-Alvarez, Martinez-Maldonado, & 
Anderson, 2018). Yet, this bring additional challenges in terms of how 
users without data analysis training can effectively communicate needs 
that can be addressed through XAI innovations. A way to address this is 
by identifying the types of explanations needed by different stakeholders 
and, then involving such stakeholders in the design process of the XAI 
itself. For example, Liao, Pribić, Han, Miller, and Sow (2021) proposed a 
question-driven process for XAI UX design to engage end-users in the 
formulation of modelling solutions. Toolkits to conduct design studies 
with users to identify XAI needs and capabilities are also emerging for 
XAI practitioners (e.g., https://www.uxai.design/). 
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HCI and Interaction Design (IxD). While XAI research has so far 
been dominated by AI and machine learning experts, a rapidly growing 
community of HCI and IxD researchers/professionals is forming to 
contribute to the design of the XAI interfaces and bring psychological 
theories of explanations to XAI research (Xu, 2019). HCI and IxD pro
fessionals can take advantage of their interdisciplinary approaches to 
help AI experts to create effective UIs, contribute to design algorithms 
that enable explainability and involve users in the design process, as 
highlighted above. Inroads are being made through human-computer 
interaction (HCI) studies and interaction design (IxD) experiences that 
are trying to bridge the AI and human perspectives (e.g. Gunning, 2017). 
AI innovations in education require a balance between learning theory, 
data science and design (Gašević, Kovanović, & Joksimović, 2017). We 
need to consider what is possible with current XAI methods to be used 
throughout the design process. At the same time, there is value in 
identifying the educational stakeholders of the sociotechnical system 
from early stages in the design process. Only then, would it be possible to 
give an active voice to learners, educators and other potential end-users, 
and identify what to explain and how to explain it. 

3.5. Pitfalls and how to avoid them 

While there are many benefits in increasing the explainability of 
educational AI systems, there are also challenges and pitfalls that need 
to be considered. This section describes some of the key pitfalls as well as 
pointing out potential solutions and principles for avoiding them. 

Needless use of complex models. A common misjudgment is to use 
over-complex models in cases where the use of an interpretable model 
would have delivered a comparable or even superior performance. As an 
example, in the context of student modelling and knowledge tracing, 
Gervet, Koedinger, Schneider, Mitchell et al. (2020) report that logistic 
regression outperforms deep learning models on datasets of moderate 
size or containing a very large number of interactions per student. 
Therefore, designers should start with simple interpretable models and 
increase complexity in a step-wise manner where performance in both 
accuracy and interpretability are measured and compared (Molnar et al., 
2020). Nevertheless, in some cases more complex models would 
significantly outperform interpretable models. To follow the same 
example, Gervet et al. (2020) report that the use of deep knowledge 
tracing approaches outperform more interpretable approaches on 
datasets of large size or where precise temporal information matters 
most. In these cases, one approach would be to complement the complex 
model with interpretable models for explainability. As an example, 
Ghosh, Heffernan, and Lan (2020) propose a learner model which cou
ples complex attention-based neural network models with a series of 
novel, interpretable model components inspired by cognitive and psy
chometric models for explainability. 

Inaccurate explanations. Explanations that are inaccurate or even 
incorrect may lead to unfavourable outcomes for the stakeholders. A 
common underlying cause of inaccurate explanations is the use of 
models that are poor, potentially due to under- or over-fitting or noisy 
data. For example, a lenient open learner model that overestimates the 
mastery level of students may encourage them to develop a false sense of 
confidence of their abilities, resulting in poor performance in summative 
assessments and exams. Given that an interpretation can only be as good 
as its underlying model, it is crucial to develop the model rigorously by 
conducting best practices for model selection, hyperperameter tuning 
and evaluation before the adoption of AI tools (Molnar et al., 2020). 
Additionally, with the increasing demand for model explainability, some 
AI tool designers may be tempted to provide plausible and convincing 
interpretations that may be inaccurate or even incorrect. One way to 
combat this issue is to only incorporate sound explanations based on the 
underlying mathematical foundations which are truthful in describing 
the underlying system (Kulesza, Burnett, Wong, & Stumpf, 2015). 

Incomplete explanations. Given the complexity of many AI models, 
some system developers may be tempted to provide incomplete and 

simplified explanations that disguise the entire complexity of the model. 
While the incorporation of incomplete explanations may appeal to a 
broad base of users, it provides them with a false sense of comprehension 
which may again lead to unfavourable outcomes. One way to combat 
this issue is to only incorporate complete explanations that expose all 
aspects of the relevant mechanisms (Kulesza et al., 2015). An alternative 
method would be to clearly flag their incompleteness, and the rationale, 
to warn the user. 

Misconceptions. Given the complexity of many AI systems, it is 
reasonable to assume that some users may misinterpret or not fully 
understand sound and complete explanations of the system. Kulesza 
et al. (2015) propose the use of iterations for providing sound and 
complete explanations without overwhelming the users. They suggest 
that “explanations could take the form of concise, easily consumable 
“bites” of information—if a user is interested in learning more about the 
system, he or she can attend to many of these explanations to iteratively 
build a higher-fidelity mental model” (p. 127). Iterative cycle of expla
nations can focus on breadth (i.e., various aspects of the model) or depth 
(i.e., drilling down into the details of the model). 

Promoting dysfunctional behaviour. The challenge in many of the 
previously mentioned pitfalls was due to users developing a false sense 
understandably. However, another line of concern is that if users have 
access to information about how a decision or recommendation has been 
made, they may be able to game the system by altering their behaviour 
to gain a more favourable outcome. For example, by having access to 
multiple rounds of submitting assignments to plagiarism detection 
software, students may use a strategy of making minimal changes to 
“bypass” the system rather than developing the disposition not to engage 
in academic misconduct. In this case, the issue is with how the system is 
implemented rather than its AI functionality or interpretability. Taking 
best practices from game theory mechanism design may help in devel
oping systems in which users are incentivised to avoid malicious gaming 
and other dysfunctional behaviours (Maskin, 2008). 

4. Case studies 

In this section, we present four comprehensive case studies that 
illustrate the application of XAI-ED for studying a diverse range of AIED 
systems. Section 4.1 discusses the use of explanations within an adaptive 
learning system powered by high-quality learnersourced content. Sec
tion 4.2 discusses the effect of adding explanation functionality to an 
adaptive system that helps students learn an algorithm for constraint 
satisfaction problems. Section 4.3 discusses the use of explanations in 
the context of feedback within a writing analytics tool. Finally, Section 
4.4 discusses the case of using explanations for data storytelling through 
team work analytics in educational healthcare systems. Table 1 dem
onstrates the relation between each of the case studies and the di
mensions of XAI-ED. 

4.1. RiPPLE: A learnersourced adaptive educational system 

4.1.1. Overview 
Adaptive educational systems (AESs) make use of data about stu

dents and learning processes to adapt the level or type of instruction for 
each student (Aleven et al., 2016). To provide such adaptivity, AESs 
require access to a large pool of instructional material and learning re
sources. These resources are commonly created by domain experts, 
which makes AESs expensive to develop and challenging to scale 
(Aleven et al., 2016). RiPPLE (Khosravi, Kitto, & Joseph, 2019) is an AES 
that takes the crowdsourcing approach of partnering with students, also 
referred to as learnersourcing (Khosravi, Demartini, Sadiq, & Gasevic, 
2021; Kim, 2015), to create the resource repository. 

4.1.2. Stakeholders and benefits 
RiPPLE is predominantly a course-level platform that instructors can 

incorporate in their teaching. Therefore, the platform should first and 
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foremost appeal to the instructors. However, the majority of the features 
of the platform are designed to be student-facing and to help students 
with their learning. A secondary mission of developing RiPPLE is to 
support educational researchers in conducting ethical, sound, large scale 
educational research. As detailed below, several attempts have been 
made to employ XAI in various parts of RiPPLE. The intention has been 
to (1) help instructors make sense of how the platform is operating, trust 
its decisions, and provide oversight and raise concerns as needed; (2) 
enable students to develop AI literacy and to have agency to regulate their 
learning and trust the system; and (3) support educational researchers to 
evaluate the platform and propose changes to improve the system and 
increase accountability. 

4.1.3. Approaches and models 
Here we discuss various ways used to incorporate XAI in RiPPLE.  

1. Explainable automated feedback on poor quality peer reviews. To 
effectively utilise a learnersourced repository of content, there is a 
need for a selection process to separate high-quality from low-quality 
resources. RiPPLE uses an evaluation process, which relies on 
crowdsourcing, where students review and evaluate existing re
sources. A common challenge with incorporating peer review and 
feedback is that some students may not have the incentive or the 
ability to provide high-quality feedback. To increase the quality of 
the provide reviews, RiPPLE uses a range of NLP models (Darvishi, 
Khosravi, & Sadiq, 2020) and comparison based explanation ap
proaches to flag comments that are too similar to previously pro
vided reviews or lack the required depth (as shown in Fig. 4-left). A 
set of tips (as shown in Fig. 4-right) provide training on providing 
better feedback. Data collected by system shows that around 35% of 
users whose reviews are flagged revise do go on to resubmit their 

comments while the other 65% ignore the hint and submit anyway 
(Darvishi, Khosravi, Abdi, Sadiq, & Gasevic, 2022).  

2. Explainable consensus approach. RiPPLE assigns each resource for 
evaluation to multiple moderators, which then requires a consensus 
approach of optimally integrating the decisions made by multiple 
people towards an accurate final decision. Summary statistics such as 
mean or median aggregation are a common explainable consensus 
approach. However, these models are quite fragile against users with 
diverse abilities or interests (El Maarry, Güntzer, & Balke, 2015). To 
increase the accuracy, RiPPLE uses a graph-based trust propagation 
approach (Darvishi, Khosravi, & Sadiq, 2021) that infers the reli
ability of each moderator. The final decision is computed as a 
weighted average of the evaluation ratings given by the peer eval
uators, which is easy to interpret. Fig. 5 shows an example of a locally 
self-explaining approach for sharing the evaluations and the inferred 
outcome with the author and moderators. They are first invited to 
vote on the helpfulness of each moderation. They are then asked to 
determine whether they agree with the outcome and provide further 
feedback. Interestingly, data captured by the platform shows that 
only 2.2% of the submitted responses disagree with the inferred 
outcome (Darvishi, Khosravi, Sadiq, & Gasevic, 2022).  

3. Explainable spot-checking. Despite efforts to increase the quality of the 
peer reviews, the outcome of the consensus approach based on 
judgements from students, as experts-in-training, cannot be wholly 
trusted. Given the limited availability of instructors, RiPPLE in
corporates a content-based recommender system that identifies and 
recommends resources that most need expert review (Darvishi et al., 
2021). When flagging a resource for spot checking, RiPPLE uses 
absolute and relative points of comparison to help instructors make 
sense of the recommendation. Fig. 6 is an example of a resource 

Table 1 
Relationship between the case studies and dimensions of XAI-ED.   

Main Stakeholders XAI Benefits Approaches Models XAI design Pitfalls 

RiPPLE  - Educators  
- Students  
- Educational 

researchers  

- Accountability and 
trust  

- AI literacy  
- Agency  

- Comparison  
- Local 

explanations  
- Example based  

- NLP functions  
- Graph-based trust 

propagation  
- Content-based 

recommender systems  
- Elo rating system  

- Co-design  
- User experience  

- Disengagement  
- Dysfunctional behaviour 

FUMA  - Educators  
- Students  

- Trust  
- Sensemaking  

- Global 
explanations  

- Local 
explanations  

- Clustering  
- Classification  
- Association rule mining  

- User-centred design  - Overly complexed 
models  

- May not benefit all 
students 

AcaWriter  - Educators  
- Students  

- Agency  
- Trust  
- AI literacy  

- Local 
explanations  

- Comparisons  

- Rule-based NLP - Co-design in design- 
research cycles  

- Narrowness of rules- 
based systems  

- Context sensitivity 
TeamWork 

Analytics  
- Educators  
- Students  

- Accountability and 
Trust  

- Agency  
- Sensemaking  

- Global 
explanations  

- Local 
explanations  

- Rule-based learning  - Co-design  - Incomplete explanations  
- Dysfunctional behaviour  

Fig. 4. Explainable suggestions for improving quality of reviews.  
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Fig. 5. Explainable consensus approach.  

Fig. 6. Explainable spot-checking.  

Fig. 7. Explainable learner modelling.  
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flagged due to moderator disagreement and the relative points of 
comparison provided to support this decision.  

4. Explainable and open learner model. RiPPLE employs an extension of 
the Elo rating system to estimate a student’s competence in each topic 
(knowledge component) of a course (Abdi, Khosravi, Sadiq, & 
Gasevic, 2019) (Other open learner models based on the Elo (Abdi, 
Khosravi, & Sadiq, 2020) Clicko (Abdi, Khosravi, & Sadiq, 2021) 
ratings have also been used in the system). The left side of Fig. 7 
shows this learner model visualised as a bar chart. The colour of the 
bars categorises competencies into three levels: novice, proficient, 
and distinguished. “Calibrating” is used when less than a threshold 
number of resources are answered on a topic. The model uses an 
example based explanation approach to show the average compe
tency of the entire cohort over each knowledge unit using a line 
graph. The right side of the figure shows RiPPLE’s explanation of the 
model for students. The explanation can be accessed by clicking on 
the question mark on the top right hand side of the model.  

5. Explainable resource recommendations. The adaptive engine of RiPPLE 
makes use of the learner model to recommend resources at the right 
level of difficulty for each student. In particular, it recommends 
easier questions on topics where students are developing mastery 
and harder questions on topics where the student has already 
demonstrated mastery. Fig. 8 demonstrates how RiPPLE has included 
both the recommendation and the learner model on the same page to 
help with transparency of how resources are recommended to stu
dents. Results from a randomised controlled experiment suggest that 
complementing the recommender system with the learner model can 
have a positive effect on student engagement and their perception of 
the effectiveness of the system (Abdi et al., 2020). 

4.1.4. XAI designs 
RiPPLE has taken a co-design approach of partnering with students 

and instructors across the conceptualisation, development, validation 
and deployment phases. The initial conceptualisation was done with 
eight academics with diverse disciplinary backgrounds including com
puter science, engineering, medicine, pharmacy and education and one 
member from the central IT systems and support of the university. 
During the development phase, the RiPPLE team worked closely with 

academics who trialled early pilots of the platform and a group of four 
paid student partners who provided advice and helped with usability 
studies. The validation was based on field studies in close partnership 
with instructors and students who have given consent. As an example, 
Abdi et al. (2020) explored the benefits of complementing recommender 
systems with explainable learner models. Finally, since deployment, 
frequent short surveys through the platform and interviews with stu
dents and instructors have been conducted to better understand the user 
experience and ensure that the stakeholders’ concerns and feedback are 
heard and considered. 

4.1.5. Potential pitfalls 
By and large, the attempts taken to employ XAI in RiPPLE have been 

well received; however, there have also been pitfalls and side effects in 
terms of promoting misbehaviour that are worth discussing. (1) Most 
students have reported that the availability of the open learner model 
increased their engagement with RiPPLE as it motivated them to 
improve their competency. However, feedback from some students 
revealed that the model can also act as a source of disengagement. In 
particular, some students indicated that they tend not to attempt ques
tions if they are unsure of the answer to avoid ’taking a hit’ in their 
rating. (2) In the case of flagging similar feedback submissions, instead 
of trying to address the issue, a strategy taken by some students was to 
try to game the system by making minor changes and resubmitting with 
the hope of no longer being flagged. 

4.2. FUMA a framework for user modeling and adaptation 

4.2.1. Overview 
FUMA is a framework for modelling and supporting students in 

learning for exploratory, open-ended learning environments (OLE), such 
as interactive simulations, educational games and MOOCS (Conati et al., 
2021). FUMA uses a range of machine learning models to discover 
classes of exploratory learning behaviours. These behaviours can then be 
used to classify users based on their learning needs and to generate 
personalised hints in real-time that guide the student towards a more 
effective usage of the tools and affordances available in the OLE. 

Fig. 8. Explainable recommendation.  
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4.2.2. Stakeholders and benefits 
The primary stakeholders for this technology are students, especially 

those who need guidance during less structured educational activities. 
Various conducted studies (Fratamico, Conati, Kardan, & Roll, 2017; 
Kardan & Conati, 2015; Lallé & Conati, 2020) have shown that FUMA 
can identify clusters of user behaviours that map onto different learning 
outcomes, and predict when a new student is not learning well early on 
during the interaction. FUMA has been shown to foster better student 
learning (Kardan & Conati, 2015) and higher trust in hints (Conati et al., 
2021). A second category of stakeholders are instructors who can use 
FUMA for sensemaking and to gain a better understanding of how the 
students learn (or not) from the environment (Conati et al., 2021). 

4.2.3. Approaches and models 
FUMA uses unsupervised clustering and association rule mining on 

existing data of students interacting with a target OLE to discover classes 
of exploratory behaviours conducive or detrimental to learning. Super
vised machine learning is applied to the resulting clusters and associa
tion rules to build classifiers that predict in real-time whether a student is 
learning from the exploratory interaction and, if not, what behaviours 
are responsible for this outcome. These behaviours can then be used to 
generate personalised hints that guide the student towards a more 
effective usage of the tools and affordances available in the OLE. Fig. 9 
includes detailed steps for each of these phases, to give a sense of the 
depth of the AI mechanisms embedded in FUMA. 

To ascertain if the complex AI underlying the FUMA-driven hints can 
be externalised to students to further increase the hints uptake and 
effectiveness, an explanation interface was implemented to convey to 
the students the motivations (why) and processes used (how) for each of 
the hints they receive. These explanations aim to help users gain a 
globally self-explaining understanding of the AI driving the hints, as well 
as a locally self-explaining understanding of the specific hints generated. 

The explanation interface is structured around three tabs, each 
providing a self-contained, incremental part of the explanation for a 
given hint, as shown in Fig. 10 (A-C). The states in Fig. 9 are used to 
justify specific aspects of the rationale for hint computation (why ex
planations) and the processes to explain how some of the relevant al
gorithm components work. These tabs display the following three why 
explanations: 1) “Why am I delivered this hint?” 2) “Why am I predicted 
to be lower learning?”, and 3) “Why are the rules used for classifica
tion?”. In addition, for the second of these why explanations (Fig. 10 
(B)), the user can access more details on how three specific aspects were 
computed (Fig. 10 (D–F)): “How was this score computed?”, “How was 
this specific hint chosen?”, and “How was my hint’s rank calculated?” 
(see Fig. 11). 

4.2.4. XAI designs 
FUMA takes a user-centred design approach for implementing the 

explanations of the hints, and follows three guiding principles from 
(Kulesza et al., 2015), aiming to make the explanations be iterative, 
namely accessible at different levels of detail, sound, and not over
whelming. Determining how to convey coherent clear and 
non-overwhelming information on the elements of the FUMA model was 
supported by a rigorous process of iterative design and pilot evaluations, 
which led to the development of the interfaces presented in Fig. 10. 
Essentially, there is a trade-off between having complete explanations 
and explanations that are not overwhelming. Enabling iterative access to 
the explanations, as shown in the figure, is an important means to 
achieve this trade-off, and it is the criterion we used for the explanation 
functionality. 

4.2.5. Potential pitfalls 
Although the association rules learned by the FUMA student models 

have been shown to have a degree of inherent interpretability, they can 

Fig. 9. User Modeling Framework broken down into three phases: Behavior Discovery, User Classification, and Adaptive Hints; rectangular nodes represent inputs 
and states, oval nodes represent processes. 
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become exceedingly complex when dealing with sophisticated OLE that 
support a large set of actions. Thus, it is important to investigate, for 
each FUMA application, what the minimal set of features is that can 
capture relevant student behaviours and provide acceptable model ac
curacy without hindering rule interpretability. Additionally, a formal 

evaluation of the explanation interface shows that whether the expla
nations improve student learning depends to some extent on a student’s 
level of conscientiousness, a personality trait defining one’s tendency to 
follow rules and instructions, where students with low conscientiousness 
benefit from having the explanations whereas their high-level 

Fig. 10. Flow chart of explanation navigation.  

Fig. 11. Sample AcaWriter ‘add a new assignment’ screenshot; the tool is designed to facilitate instructors in aligning their tasks with genre-based feedback. 
Figure reproduced from Knight, Shibani, et al. (2020). 
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counterparts do not (Conati et al., 2021). These findings suggest 
personalizing the explanation functionality so that it proactively en
courages users who are known to have low contentiousness or high 
reading proficiency to access explanations. They also uncover the need 
to investigate how to reduce the possibly negative effects of explanations 
on users with high contentiousness and low reading proficiency, for 
instance by discouraging explanation access or by understanding how to 
make them useful for these users. 

4.3. AcaWriter 

4.3.1. Overview 
Writing Analytics tools apply analytic techniques drawing on process 

and sequence mining, natural language processing, and machine 
learning approaches to understand and provide feedback on features of 
the writing (process or product) to support that writing (see, e.g. 
Buckingham Shum, Knight, McNamara, Allen, Betik and Crossley, 
2016). The focus of these tools has tended to be on formative feedback in 
tasks that do not have pre-created (and validated) questions, building on 
a longer body of work in developing Automated Essay Scoring (AES) 
systems for automated summative assessment and Automated Writing 
Evaluation (AWE) using similar approaches for formative purposes 
(Warschauer & Grimes, 2008) and intelligent tutoring systems that 
guide students through strategies to address well-defined constructed 
response writing tasks (Roscoe & McNamara, 2013). AcaWriter is a 
theory driven writing analytics tool that provides feedback primarily to 
university students, on the rhetorical structures in either their academic 
scholarly, or reflective, writing (Knight, Shibani, et al., 2020). 

4.3.2. Stakeholders and benefits 
The AcaWriter tool has primarily been targeted at university level 

writing, through both integration into specific courses (e.g., Law and 
Accounting for the analytical parser, and Pharmacy for the reflective 
parser), wider rollout to all students and supporting materials for aca
demics to implement the tool in their own context, and a higher-degree 
research (HDR) version both as a standalone and integrated into an 
online course for learning how to write an abstract (Abel, Kitto, Knight, 
& Buckingham Shum, 2018). The AcaWriter tool has been designed to 
provide low stakes formative feedback, in which the user is engaged in 
tasks to develop their understanding of their subject, including through 
their writing and the incorporation of argumentative structures – or 
rhetorical moves – into this writing. 

4.3.3. Approaches and models 
Feedback is provided using a rule-based natural language processing 

system, which identifies syntactic relations between rhetorical concepts 
(’in contast’, ’previous research’, etc.) and key terms or topics in the 
writing. The feedback provided is coupled with a close alignment to the 
task’s learning design, in order to augment wider assessment structures 
with this formative feedback (Knight, 2020; Knight, Shibani, & Buck
ingham Shum, 2018). It is through this alignment that explanation is 
drawn. Elements of the feedback provided are editable for the particular 
learning context (Shibani, Knight, & Buckingham Shum, 2019), with 
materials available to guide instructors in aligning the feedback to their 
assignments. The intent is to provide methods to align feedback (or 
explanations) to learning contexts through design that encodes expec
tations of what is to be learned and structures - including XAI - to support 
this learning (Knight, Gibson, & Shibani, 2020). 

The implementation approach for AcaWriter has aligned learning 
design and analytics. This implementation is evaluated by operational
ising what it would mean for the feedback to have impact, or to put it 
another way, for the explanation to achieve understanding in the stu
dent. For example, we have investigated whether revisions to the text 
introduce particular target features. At its simplest, this has involved 
analysing drafts and redrafts of the same text. In other contexts a guided 
process was implemented that builds up the students’ knowledge of the 
constituent parts of the feedback and its relation to their assessment 
tasks, targeting those assessment tasks and the students evaluative 
judgement capacities (Shibani, Knight, Buckingham Shum, & Ryan, 
2017). 

4.3.4. XAI designs 
The feedback information provided through the tool takes several 

forms:  

1. Annotation at the sentence level, with iconic labels and highlighting 
indicating the type of sentence identified by the tool (and by 
extension, unlabelled sentences show that no rhetorical move is 
detected);  

2. Through a ‘feedback’ tab that provides document level feedback 
commentary regarding issues such as a typical sequence of moves, or 
the presence of particular moves in introductory sections;  

3. A third tab offers reminders of how the moves map to the writing 
assignment rubric, plus examples of the kinds of moves students can 
make in their writing; these can be customised to the writing task, 
although there is potential to automate selection of examples that 
match the genre of the text provided (Knight, Abel, et al., 2020). 

The tool includes a number of student guides regarding its effective 
use, as well as a notice that users should “Remember, AcaWriter does not 

Fig. 12. Sample analytical report on a law essay in AcaWriter highlighting rhetorical moves in the writing. Left image shows the whole screen layout with the editor 
and feedback; right image shows the detailed feedback. Figures reproduced from Knight, Shibani, et al. (2020). 
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really understand your writing the way people do […] If you think it got 
it wrong, that’s fine – now you’re thinking about more than spelling, 
grammar, and plagiarism.”, or, as the webpage introduction says “UTS 
isn’t here to tell you what to think, but to help you learn how to think. 
Similarly, AcaWriter won’t tell you what to write, but will help you learn 
how to say it in the most rigorous, effective way.” These aim to build 
trust, agency and AI literacy in understanding the uses and pitfalls of the 
tool. 

In summary, the AcaWriter tool instantiates XAI through imple
menting feedback on units of analysis — sentences and documents — in 
the context of design for learning that couples feedback and formative 
learning tasks, and resources that seek to explain the features on which 
feedback is provided (while also acknowledging the inherent limitations 
of such automated analyses). 

AcaWriter feedback is theory driven, underpinned by literature in 
writing theory, which has been instantiated in a number of broadly 
comparable tools (see Knight, Abel, et al., 2020) in this case into a 
rule-based NLP system. Early versions of a user interface onto the 
rhetorical move detection were evaluated through both student and 
instructor user experience evaluation and co-design, with subsequent 
evaluation involving more formal testing with quasi-experimental de
signs (Knight, Buckingham Shum, Ryan, Sándor, & Wang, 2018; Knight, 
Shibani, et al., 2020). The tool was scaled through piloting in one 
discipline context, and adapting these learning designs to other disci
pline contexts. In these evaluations, we demonstrate that the tool adds 
value to perceived ’usefulness’ of formative writing tasks, and that stu
dents with access to the tool do indeed make more revisions and include 
more rhetorical moves (Knight, Buckingham Shum, Ryan, Sándor, & 
Wang, 2018; 2020c). 

User-centred co-design with academics has been key in this imple
mentation and disciplinary contextualisation (Knight, Gibson, & Shi
bani, 2020; Shibani, Knight, & Buckingham Shum, 2020). The tool is 
now deployed at scale, with students and instructors able to access the 
tool and in the academic case create their own ‘assignment’ code for 
students to receive one of the pre-created feedback options. This work 
points to the potential of these tools, with students who receive the 
feedback more likely to develop draft texts, and to incorporate rhetorical 
moves (Knight, Shibani, et al., 2020). 

4.3.5. Potential pitfalls 
While the tool is designed to augment effective design for learning, 

its implementation raises a number of pitfalls. Chief among these is that 
for explanation to be achieved, users (primarily students) must of course 
understand the characteristics of the features or moves for which feed
back is received. As a result, the tool and effectiveness of explanation 
cannot be considered outside the context of use. In those contexts, the 
tool also provides feedback only on a narrow range of features 
(rhetorical structures) for particular types of writing. In addition, it does 
so imperfectly, particularly where other features (such as spelling and 
grammar) may interfere in the text processing. These imperfections may 
provide some learning opportunity (Kitto, Buckingham Shum, & Gibson, 
2018; Knight, Gibson, & Shibani, 2020) and the interface itself does 
encourage users to reflect on the feedback to build their own judge
ments. Nevertheless, opportunity costs (time spent on x, rather than y) 
may be present in any system. These pitfalls highlight the importance of 
human-in-the-loop decision making, and task design for learning in 
implementing learning analytics tools. The importance of empirically 
studying students’ use of automated feedback cannot be over-stated; it is 
only by seeing their engagement (or lack thereof) that we can tell if the 
feedback and explanations are actioned appropriately. The observation 
that students needed scaffolding in their use of AcaWriter has led, for 
instance, to the creation of online tutorials that prepare them (Abel, 
2022), and activities that promote deeper critical reflection on the 
feedback (Shibani, Knight, & Buckingham Shum, 2022). 

4.4. Data storytelling through teamwork analytics in healthcare 

4.4.1. Overview 
Immersive, high-fidelity simulations are a common pedagogical 

approach used in healthcare to support students’ and practitioners’ 
learning. In these, participants are posed with an authentic challenge for 
them to decide on the potential course of action under time pressure. 
Simulations are commonly conducted in learning spaces instrumented 
with various physical and digital devices that resemble those available 
in real hospital rooms. The simulations are followed by a debrief in 
which participants engage in deep reflection about errors they may have 
made, areas of improvement and how stressed they may have felt during 
the simulation (Palominos, Levett-Jones, Power, & 
Martinez-Maldonado, 2019). In the debriefs, an educator leads the 
reflection based on direct observations or video-recordings of the 
simulation. However, the educator and learners commonly do not have 
objective evidence to discuss as replaying the video-recordings can be 
time consuming and unpractical. This has motivated the use of multi
modal learning analytics to augment the data capture capabilities of the 
simulation rooms to identify salient aspects of team activity and make 
these available during the debrief (Martinez-Maldonado et al., 2017). 
The data is collected using indoor positioning sensors, microphones, 
physiological wristbands and an observation console (Martinez-Maldo
nado, Echeverria, Fernandez Nieto, & Buckingham Shum, 2020). 

4.4.2. Stakeholders and benefits 
The multimodal analytics are aimed at supporting educators and 

undergraduate nursing students enrolled in clinical units. These students 
do not have the time to delve into the analysis of their own data because 
they also need to reflect on the clinical case they had to address. Based 
on co-design sessions (Prieto-Alvarez, Martinez-Maldonado, & Shum, 
2018), it was identified that both kinds of users would benefit from 
explanatory visualisations by enabling them to reflect on evidence 
automatically captured during the group activities. This can increase 
accountability of students who can demonstrate how their actions reflect 
the application of their clinical knowledge. Exposing the algorithms 
used to generate the visual interfaces aims at enhancing trust in the 
system and ensure the final users have the agency to make their own 
teaching and learning decisions. 

4.4.3. Approaches and models 
The concept of data storytelling was adopted to use narrative to 

communicate insights extracted from the multimodal data. The idea of 
data storytelling has been suggested, both by the general XAI research 
community (El-Assady et al., 2019) and the emerging XAI 
sub-community within learning analytics (De Laet et al., 2018), as a way 
to automatically structure explanations from data analysis and to 
emphasise some data points that are relevant to particular stakeholders 
or users. Here we discuss two ways used to incorporate data storytelling 
in the multimodal learning analytics interfaces for healthcare 
simulation. 

1. Explaining key insights from multimodal data. A number of data sto
rytelling interfaces were created to support sensemaking during the 
debrief. The multimodal data captured during the teamwork sessions 
can be complex. For example, actions can be logged by the digital 
devices located in the room and also by an observer. Even though 
these logged actions are discrete and easy to recognise by an 
educator or learners (e.g., checking vital signs or providing medi
cation to the patient), sensemaking challenges emerge if they try to 
focus on assessing such actions for reflection. For example, it is not 
enough for learners just to ’see’ their actions but they need to assess 
these actions in light of domain knowledge, guidelines or regula
tions, to understand if and how they can improve their practice. In 
other words, learners can get lost in the interpretation of such actions 
(see Fig. 13). 
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In response, the data storytellling approach adopted in this case 
consisted in providing layered local explanations based on the learning 
goals of the simulation. A data storytelling layer is created for each 
learning goal, which consists in combination of data visualisations and 
textual narratives. Fig. 14 (left) a presents an example of a data story
telling layer that emphasises only certain data points that are relevant to 
a learning goal (i.e., see Fig. 14, A). In this case, one of the learning goals 
is for students to reflect whether they checked the vital signs of the 
patient every 10 min after complaining from chest pain and clearly 
deteriorating (B). The interface is then improved by adding narrative 
that explains why certain data points are relevant (A) or to indicate the 
absence of critical data points (C). An explanatory title describes, in lay 
language, the main take-away message from that data layer. If the goal is 
to reflect on stress or arousal as automatically captured by the physio
logical wristband, the students or the educator can press a button (E) and 
labels appear on top of the visualisation to indicate in text if mild, high 
or very high arousal was detected by the electrodermal activity sensor 
(F), which can be indicative of high stress or cognitive load. At the top of 
the visualisation, a short summary (D) is provided, indicating which 
roles in the team experienced more arousal during the simulation. The 
purpose is to spark discussion by providing brief but clear explanations 
from the data analysis in ways that users without multimodal data 
analysis training can make sense of. Inroads are currently being made to 
also create layers that communicate insights from the analysis of x-y 
indoor positioning traces (Fernandez-Nieto, Martinez-Maldonado, et al., 
2021). 

2. Explaining the algorithm used for narrative visualisation. Rule-based al
gorithms were used to generate the storytelling layers presented 
above. These can receive parameters as input or analyse sensor data 
and compare it across the whole dataset. For example, to assess 
whether an action was performed in the right time frame, a param
eter can reflect official indicators according to healthcare guidelines. 
For the case of physiological data, the data streams from a student 
are compared across the arousal levels experienced by other students 
in the past and therefore determine the level of arousal for the pre
sent student. The data stories hide the underlying algorithm during 
the reflection. 

Fig. 15 illustrates how these rules have been opened for participants 
to provide them with global explanations about how the different visual 
and narrative elements appear on the interface. For example, Fig. 15 (A) 
show how the narrative that appears at the top of the data storytelling 
depends on a parameter that reflect one healthcare guideline (“Students 
should check the vital signs of the patient every 2 min”). Similar pa
rameters are used to automatically add the orange shaded areas to 
indicate that certain actions were missing during the simulation (B). A 
different rule assessed the order of certain actions (e.g., indicating that 
calling to the doctor should happen before a key event). 

An evaluation of manipulability and transparency of the teamwork 
analytics dashboard showed that educators wanted to gain control over 
the way the data stories are programmed to be able to trust in them 
(Martinez-Maldonado et al., 2020). They want to be aware of the pa
rameters used to generate the stories for the purpose of compliance with 

Fig. 13. Sample feedback messages for law from AcaWriter on missing rhetorical moves. Figures reproduced from Knight, Shibani, et al. (2020).  
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accreditation goals, and be able to adapt/change these parameters ac
cording to the cohort of students (for example, by being more relaxed 
with first year students compared to final year students). By contrast, 
nursing students did not feel in the position to understand or change the 
parameters, but they appreciated being able to understand the intended 
goals of the task based on those parameters. 

4.4.4. XAI designs 
A bottom-up, human centred approach was followed in this case to 

co-create data stories with relevant stakeholders. A number of co-design 
techniques such as persona identification, user journeys and rapid pro
totyping were conducted in various cycles of design with educators and 
nursing students (Prieto-Alvarez, Martinez-Maldonado, & Shum, 2018). 
In fact, the intention behind this case is that the characteristics of the 
learning design drive the kinds of explanations that are offered by each 
data story and, therefore, the UX design. The narratives added to the 
visualisations are a reflection of the kind of feedback a teacher would 
provide to students and can be edited by them in design time. A new 
simulation would require the adaptation of the interface according to 
the learning goals, to emphasise the data points that are relevant to the 
task at hand. With effective authoring interfaces, the tool can become an 
explanatory learning analytics interface that augments the kind of 
feedback that can be provided by the educator during the debrief. 

4.4.5. Potential pitfalls 
The tool has been well received by educators and learners. They can 

see the potential of augmenting the evidence they can reflect upon and 
also how the same evidence could be used more widely to improve 
clinical practice in authentic scenarios. However, the data storytelling 
approach can open up an interesting debate around incomplete expla
nations. This approach addressed the problem of data abundance by 
extracting what is important. However, what if important data and in
sights get unintentionally hidden? Since teamwork simulation is a very 
complex activity, many other salient aspects may not be covered by the 
current data capture capabilities. The data stories would emphasise the 
data relevant to the initial pedagogical goals. A derived potential issue is 
that misbehaviour could be inadvertently promoted if feedback and 
reflection is only focused on the data that can be automatically captured. 
For example, sensors may be able to capture if certain medical procedure 
was performed but not necessarily how it was performed. This could 
even encourage students to game the system. Keeping the educator in 
the loop is therefore critical to guide and complement the use of evi
dence for promoting reflective practices. This naturally occurs for the 
case of teacher-led debriefs in health care. However, if data storytelling 
is applied in interfaces used by students alone, these potential pitfalls 
should be carefully considered and mitigated. 

Fig. 14. Two example data storytelling layers explaining activity logs (left) and physiological data (right), adapted from (Fernandez-Nieto, Echeverria-Barzola, et al., 
2021, pp. 1–15). 

Fig. 15. Explaining the algorithm used for narrative visualisation, adapted from (Echeverria, Martinez-Maldonado, & Buckingham Shum, 2019).  
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5. Opportunities, challenges and future research needs 

This section discusses opportunities, challenges and future research 
needs for advancing the effective incorporation of XAI in education. 

5.1. Actionable explanations 

Explainable AI has often been associated with the aim to provide 
actionable explanations for stakeholders with the growing importance of 
big data in education and learning analytics. While actionable expla
nations are commonly related to data-informed decision making in ed
ucation, a formal definition of actionable explanations as actionable 
insights has been proposed: “should be interpreted as data that allows a 
corrective procedure, or feedback loop, to be established for a set of 
actions” (Jørnø & Gynther, 2018, p. 198). For explainable AI in educa
tion this means that the emphasis should not only be on explaining the 
inner workings of an algorithm and how certain results are computed, 
but that there should be a purposeful design consideration of an AI 
system that can guide the user to take a certain action (Winne, 2021). As 
shown in the current paper and the literature, certain classes of AIED 
system seek to provide actionable explanations to promote learning, such 
as provision of formative feedback (Knight, 2020), triggering reflection 
and metacognitive monitoring, explainable recommendation of learning 
resources to engage with (Abdi et al., 2020; Barria-Pineda et al., 2021), 
(Palominos et al., 2019), revision of course content (Ali, Hatala, Gašević, 
& Jovanović, 2012), assess algorithmic bias and fairness (Baker & Hawn, 
2021; Kizilcec and Lee, In Press), optimal use of instructors time to re
view student work (Darvishi et al., 2021) or provide support for those 
who need it the most (Khosravi, Shabaninejad, et al., 2021), or more 
generally taking a wide range of pedagogical actions (Pardo et al., 
2016). 

Future research on XAI to provide actionable insights should address 
several critical challenges. First, a recent systematic review of dash
boards (Matcha, Gašević, Pardo et al., 2020), a form of explainable AI 
systems in learning analytics, showed significant limitations related to 
data used along with challenges related to design and evaluation of 
systems. No study on dashboards had data about the key component of 
self-regulated learning —- cognitive and metacognitive tactics and 
strategies. As Winne (2021) argues, the absence of data about cognitive 
and metacognitive tactics and strategies does not allow for providing 
guidance to learners about how to approach their learning. That is, even 
if the algorithms that are used can offer a great deal of explainability, we 
should also work on mechanisms for purposeful collection of data and 
measurement of constructs on which actionable insights are to be pro
vided (Gašević, Dawson, & Siemens, 2015; Winne, 2020). 

5.2. Personalised explanations 

Existing research on XAI suggests that having AI systems explain 
their inner workings to their end users can help foster transparency, 
interpretability, and trust. However, there are also results suggesting 
that such explanations are not always valued by or beneficial for all 
users. For instance, in Section 4.2 we discussed findings showing how 
some user characteristics modulate the effect of explanations on both 
student’s learning and perception of the adaptive hints available in the 
ACSP tutoring system, providing insights on how personalisation might 
bolster explanation effectiveness in this context. These results are in line 
with previous work that showed the impact of user differences on 
explanation effectiveness in domains different to education (e.g. (Mil
lecamp, Htun, Conati and Verbert, 2020, 2019; Kleinerman, Rosenfeld, 
& Kraus, 2018; Kouki, Schaffer, Pujara, O’Donovan, & Getoor, 2019)), 
and calls for research further exploring the value of personalised XAI in 
education. The vision is that of a personalised XAI, endowing AI-driven 
pedagogical systems with the ability to understand when, and how to 
provide explanations to their end users (e.g., students, teachers, parents) 
(Conati et al., 2021). Specifically, it is important to identify: what types of 

explanations different end users need (e.g., why or how the system 
generated a specific outcome); how the explanations should be delivered in 
order to be informative and non-intrusive; and whether these factors 
might depend on individual differences (e.g., long-term abilities and 
traits, short-term cognitive and affective states, preferences) in order to 
enable delivery of personalised explanations that accounts for user di
versity and bolster inclusiveness of outcomes. 

5.3. Human-centred AI design in education 

The process for the design of AI and learning analytics systems is 
underexplored in spite of promising results that have been demonstrated 
in the recent literature. A recent systematic literature review (Bodily & 
Verbert, 2017) showed that only about one in ten studies reported a 
needs analysis before designing a learning analytic dashboard or 
recommender system. An important research direction is to work on 
methods that will build design partnerships between developers, re
searchers and the stakeholders who are typically the people who are 
ultimately expected to use the tools. Particular attention should be paid 
to stakeholders from underrepresented groups to ensure they have a 
meaningful voice (Buckingham Shum et al., 2019; Dollinger et al., 
2019). Design considerations should also focus on the way we envision 
interaction of stakeholders with explainable AI as another form of 
actionability. Opening learner models can also be a form of invitation for 
learners to ‘push back’ against some of information that is incomplete or 
doubtful (Bull, 2016), and thus contribute to validation of an AI system, 
while promoting learning engagement. 

5.4. Evaluating explanations 

We have already noted the importance of studying XAI in use, to see 
whether in fact the explanations are understood, and appropriately 
actioned. Without such evidence, no claim to have designed effective XAI 
can be made. HCI offers diverse range of techniques can be used to 
gather such evidence, each of which brings its own strengths and 
weaknesses (Olson & Kellogg, 2014). These include usability laboratory 
studies to gain insight from learner reflections in combination with high 
definition interaction data; activity log analysis to test at scale whether 
learner actions appear to have addressed feedback and explanations; 
retrospective cued recall that uses images/video to prompt users to 
share their thinking; and qualitative self-report data on the level of 
trustworthiness learners/educators have in the tool/infrastructure. 

5.5. Towards trustworthy AI educational systems 

Ultimately, we might state our goal to be the creation of trustworthy, 
AI-augmented, sociotechnical systems. Firstly, the emphasis on trustwor
thiness points to the fact that this is not the same as creating AIED that 
people trust —- after all, people place misguided trust in all sorts of 
technology. Secondly, the emphasis on AI-augmented draws attention to 
our belief that while it is certainly possible to learn some things as an 
isolated individual in front of a computer, the most effective, engaging 
forms of learning are relational, human activities, involving emotions, 
other learners, and a relationship in which you trust your teacher/coach 
or peers to both support and challenge you. AI augments this system. 
Connected to this, thirdly, sociotechnical systems reminds us that we 
need to frame AIED design not solely as the creation of a digital tool, but 
as the design of an overall educational system involving other people 
with different roles, working in an organisational contexts (e.g. a high 
school in an economically struggling suburb; an elite university; a 
training unit in a large multinational), in a society that may introduce 
further constraints (e.g. a national curriculum, certain kinds of teachers, 
assessment expectations, parental expectations). These contexts and 
constraints define the ’life-chances’ of a given AIED tool. As so many 
educational technology cases have demonstrated over the years (Scan
lon et al., 2013), failure to take these into account simply adds to the 
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graveyard of promising tools that never achieved sustained adoption. 
This paper has begun to demonstrate that what counts as an 

‘adequate, trustworthy’ explanation will vary drastically, depending on 
whether that person is an AIED researcher, a learning scientist, a school 
teacher or principal, a parent or a student. Possibly only the researcher 
would know what they were even looking at if permitted to look ‘inside 
the algorithmic black box’. An important line of empirical work is 
therefore opening up, to clarify what stakeholders consider to be trust
worthy explanations, and beyond that of course, what it takes to trust 
the software as a whole, which will turn on all its behaviour, not just its 
explanations. 

However, as noted above, through no fault of their own, people may 
be misguided in placing trust in a system they only partially understand. 
We need as a field, therefore, to move beyond just the empirical ques
tion, and ask a more normative question: By what criteria should we (as 
educational and AI experts) declare an AIED system to be trustworthy? 
By analogy, this is the difference between answering the question, Are 
people willing to fly on this plane? and Is this plane fit for purpose, as judged 
by engineering and other civil aviation standards? The difficulty that AIED 
currently faces as a field, is that the societal ’trust infrastructure’ that we 
have around mature engineering fields is simply not in place yet. While 
one key element to building trust is the software’s capacity to explain its 
behaviour adequately to a given stakeholder, in fact, a chain of diverse 
arguments underpins the claim that the software is trustworthy; devel
oping criteria to test the integrity of each link in that chain is the focus of 
one or more disciplines, which together establish a notion of overall 
‘system integrity’ (Buckingham Shum, 2019). 

6. Conclusion 

Advancements in AI are impacting on most if not all sectors and 
education is no exception. Given that the development of AI tools and 
technologies is outpacing the social and even legal aspects of the im
plications of wide scale adoption, it is understandable that there is a 
degree of public mistrust. Explainable AI is a growing area of research 
wherein the concerns of fairness, accountability, transparency and 
ethics can be mitigated. In the educational setting, the importance and 
need for Explainable AI is further heightened due to the issues related to 
learner autonomy and agency, support for learner metacognitive pro
cesses and reflective processes and broader issues relating to authentic 
assessment, credentialing and academic integrity. 

In this paper we have examined the multiple and complex aspects of 
Explainable AI in education. We have outlined a framework called XAI- 
ED with which educational AI tools can be studied, designed and 
developed. XAI-ED covers six fundamental aspects of XAI in education 
relating to stakeholders, benefits, approaches, models, designs and pit
falls. The comprehensive discussion of these six aspects allows for a 
detailed understanding of current state-of-art and open challenges. We 
have further anchored these six aspects into four diverse case studies 
relating to leanersourced adaptive systems, open-ended learning envi
ronments, writing analytics tools, team based learning to support 
knowledge transfer. There is a wealth of experiential knowledge 
embedded in these case studies, which we have deliberated upon to 
expose a number of XAI opportunities and challenges. Finally, we have 
used the analysis of the six fundamental aspects and experiences from 
the case studies to synthesise an agenda for future research for XAI in 
education. We highlight five areas of particular importance, namely the 
need for development of actionable and personalised explanations, 
further incorporation of human-centred design in development of 
educational tools, rigorous evaluation of the impact of incorporating XAI 
in education and ultimately advancing towards development of trust
worthy AI educational systems. 

We conclude that XAI is a critical element that is indispensable to 
fully avail the opportunities and benefits that AIED systems present for 
education, human capital development and learning sciences We call 
upon the research and practitioner community in AIED systems to 

review, critique, champion and advance the opportunities, challenges 
and future research needs we have outlined in this paper. 
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Matcha, W., Gašević, D., Pardo, A., et al. (2020). A systematic review of empirical studies 
on learning analytics dashboards: A self-regulated learning perspective. IEEE 
Transactions on Learning Technologies, 13, 226–245. 

Miao, F., Holmes, W., Huang, R., & Hui, Z. (2021). AI and education: Guidance for policy- 
makers. Technical Report. UNESCO. URL: https://unesdoc.unesco.org/ark: 
/48223/pf0000376709. 

Millecamp, M., Htun, N. N., Conati, C., & Verbert, K. (2019). To explain or not to explain: 
The effects of personal characteristics when explaining music recommendations. In 
Proceedings of the 24th international conference on intelligent user interfaces (pp. 
397–407). 

Millecamp, M., Htun, N. N., Conati, C., & Verbert, K. (2020). What’s in a user? Towards 
personalising transparency for music recommender interfaces. In Proceedings of the 
28th ACM conference on user modeling (pp. 173–182). Adaptation and 
Personalization.  

Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences. 
Artificial Intelligence, 267, 1–38. 

Mills, C. N., Potenza, M. T., Fremer, J. J., & Ward, W. C. (2005). Computer-based testing: 
Building the foundation for future assessments. Routledge.  

Mitrovic, A. (2003). An intelligent sql tutor on the web. International Journal of Artificial 
Intelligence in Education, 13, 173–197. 

Mitrovic, A. (2012). Fifteen years of constraint-based tutors: What we have achieved and 
where we are going. User Modeling and User-Adapted Interaction, 22, 39–72. 

Mitrovic, A., & Martin, B. (2007). Evaluating the effect of open student models on self- 
assessment. International Journal of Artificial Intelligence in Education, 17, 121–144. 

Molnar, C. (2019). Interpretable machine learning. https://christophm.github.io/inte 
rpretable-ml-book/. 

Molnar, C., König, G., Herbinger, J., Freiesleben, T., Dandl, S., Scholbeck, C. A., et al. 
(2020). Pitfalls to avoid when interpreting machine learning models. arXiv preprint 
arXiv:2007.04131. 

Moore, M. G. (2013). The theory of transactional distance. In M. G. Moore (Ed.), 
Handbook of distance education (pp. 84–103). New York and London: Routledge.  

Moore, J. D., & Paris, C. L. (1992). Exploiting user feedback to compensate for the 
unreliability of user models. User Modeling and User-Adapted Interaction, 2, 287–330. 

Moosavi-Dezfooli, S. M., Fawzi, A., Fawzi, O., & Frossard, P. (2017). Universal 
adversarial perturbations. In Proceedings of the IEEE conference on computer vision and 
pattern recognition (pp. 1765–1773). 

Nicol, D. J., & Macfarlane-Dick, D. (2006). Formative assessment and self-regulated 
learning: A model and seven principles of good feedback practice. Studies in Higher 
Education, 31, 199–218. 

Olson, J. S., & Kellogg, W. A. (2014). Ways of knowing in HCI. Springer Publishing 
Company, Incorporated.  
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