
On the Evidence for a Learning Hierarchy in Data Structures
Exams

Thomas Pelchen
University of Technology Sydney

Sydney, Australia
Thomas.Pelchen@student.uts.edu.au

Luke Mathieson
University of Technology Sydney

Sydney, Australia
Luke.Mathieson@uts.edu.au

Raymond Lister
University of Technology Sydney

Sydney, Australia
Raymond.Lister@uts.edu.au

ABSTRACT
Several previous research studies have found a relationship between
the ability of novices to trace and explain code, and the ability
to write code. Harrington and Cheng refer to that relationship
as the Learning Hierarchy. However, almost all of those studies
examined students at the end of their first semester of learning to
program (i.e. CS1). This paper is only the third paper to describe
a study of explain in plain English questions on students at the
end of an introductory data structures course. The preceding two
papers reached contradictory conclusions. Corney et al. presented
results consistent with the Learning Hierarchy identified in the CS1
studies. However, Harrington and Cheng presented results for data
structures students suggesting that the hierarchy reversed by the
time students had progressed to the level of learning about data
structures; that is, tracing and explaining were skills that followed
writing. In our study of data structures students, we present results
that are consistent with the Learning Hierarchy derived from the
CS1 students. We believe that the reversal identified by Harrington
and Cheng can occur, but only as a consequence of a mismatch in
the relative difficulty of tracing, explaining and writing questions.

CCS CONCEPTS
• Social and professional topics→ Computer science educa-
tion.

KEYWORDS
programming, data structures, explain in plain English

1 INTRODUCTION
Lopez et al. [7] developed a model for the relationship between
the ability of novice CS1 programmers to read, explain, and write
code, using data obtained from an end-of-semester exam. The upper
portion of the model is shown in Figure 1. The R2 values in Figure 1
indicate that student scores on tracing questions alone accounted
for only 15% of the variation in student scores on writing questions,
and student scores on explaining questions alone accounted for only
7% of the variation in student scores on writing questions. However,

the combination of scores on tracing and explaining accounted for
46% of the variation on writing questions.

A common, but not universally accepted, interpretation of the
Lopez et al. model is that a student’s ability to trace small pieces
of code precedes their ability to explain small pieces of code and
the combination of tracing and explaining precedes a student’s
ability to systematically write small pieces of code. Harrington and
Cheng [4] refer to this model as the Learning Hierarchy. Work
subsequent to Lopez et al. has provided further empirical support
for this Learning Hierarchy [6, 8, 11]. Venables et al. [11] reported
that for their data the combination of scores on tracing and ex-
plaining accounted for 66% of the variation in students scores on
writing questions. A theoretical explanation has been proposed for
these results, using neo-Piagetian theory [5, 10], and most recently
methods of instruction for introductory programming have been
proposed in which code tracing and explaining are taught as part
of teaching code writing [9, 12].

Figure 1: The upper portion of the Lopez et al. model

While there have been several studies of the Learning Hierarchy
in CS1 students, there have been few investigations of a possi-
ble hierarchy for programming students further into their degree;
specifically, there have been just two studies of students studying
data structures and algorithms. One of those studies [2] produced
evidence consistent with the same Learning Hierarchy (i.e. tracing,
explaining and writing). However the other study produced some
evidence that led the researchers, Harrington and Cheng [4], to
conclude that the Learning Hierarchy had ceased to apply by the
time students had reached a data structures course. Furthermore,
among students who did show a difference in their scores on code
tracing questions and code writing questions, the higher score was
as likely to be among the tracing questions as among the writing
questions, suggesting that the ability to trace data structures-related
code did not precede the ability to write such code. Thus, in this
paper, the primary research question is:

• RQ1: Can we reconcile the difference between the Harring-
ton and Cheng study [4] with the other study of a data
structures exam [2] and the studies of CS1 exams?

Our principal method for exploring that question is to analyze data
from a data structures exam conducted at the authors' institution.
Our exam did not require students to write code, but it did require
students to both trace code and explain code. Thus our data cannot
be used to directly explore what skills precede code writing, but
our data does allow us to explore the quantitative methods used
to establish a relationship between any two skills in the hierarchy,
since the methods used to establish a relationship between the
combination of tracing and explaining to writing are the same as
the methods used in this paper to study the relationship between
tracing and explaining.

Our data also allows us to explore another research question:

• RQ2: Are there types of questions in addition to tracing
questions that show a statistical relationship with explaining
code?

1.1 Our Students and their Context
The data structures and algorithms course at the authors' institu-
tion covers lists, queues, stacks, hashing and maps, trees, graphs,
sorting, string matching and algorithmic theory including greedy
algorithms, dynamic programming, divide and conquer, algorith-
mic analysis and simple complexity theory. It also introduces the
students to C++. The cohort consists of 278 students who attempted
the final exam. Most of the students (>90%) are majoring in some
form of software development. Two programming courses precede
this data structures course; both taught in Java.

2 OUR FINAL EXAM
The two-hour open-book exam at the authors' institution contained
20 multiple choice questions (MCQ) and 5 explain in Plain English
(EiPE) questions. The remaining questions did not involve trac-
ing code, explaining code, or writing code and are therefore not
described in this paper.

Multiple Choice Question 1
What will the following code snippet print out?

int i = 5;
int * p = &i;

*p += 10;
cout << p;

A. The address of variable i.
B. 15
C. 10
D. An unknown value from memory

Figure 2:Multiple choice question 1, a code tracing question.

Multiple Choice Question 5
Consider the following code:

class node {

private:
int data;
node* next;

public:
node(int data, node* next){

this->data = data;
this->next = next;

}

int get_data() const {
return this->data; }

bool p() const {
if (next == nullptr)

return true;
if (data < next->get_data())

return false;
return next->p();

}
};

and the following code snippet:

node* x = new node(1, nullptr);
node* head = new node(2, x);
head->p();

What is the result of the code snippet?

A. p is executed on both nodes and both return false.
B. p is executed on both nodes and both return true.
C. p is executed on only the first node and it returns false.
D. p is executed on only the first node and it returns true.

Figure 3: Multiple choice question 5, a tracing question.

Multiple Choice Question 12
Which one of the following statements is TRUE?

A. 15n2 + 3n + 2 ∈ O(n loд2n)
B. 15n2 + 3n + 2 ∈ Ω(n4)
C. 15n2 + 3n + 2 ∈ O(n3)
D. 15n2 + 3n + 2 ∈ O(15)

Figure 4: Multiple choice question 12, a “Big O” question.

Multiple Choice Question 14
Which one of the following statements is FALSE?

A. n5 + 2n4 − 2n + 2 ∈ O(n6)
B. n5 + 2n4 − 2n + 2 ∈ Ω(n4)
C. n5 + 2n4 − 2n + 2 ∈ Θ(n5)
D. n5 + 2n4 − 2n + 2 ∈ Θ(n7)

Figure 5: Multiple choice question 14, a “Big O” question.

Multiple Choice Question 17
Assuming there is no collision, what is the best expected
asymptotic (big-oh) running time of inserting a new element
into a hashmap which already has n elements?

A. O(1)
B. O(n)
C. O(n2)
D. O(loд2n)

Figure 6: Multiple choice question 17, a “no category” ques-
tion.

2.1 The Multiple Choice Exam Questions
The 20 multiple choice questions consisted of 5 code tracing ques-
tions, 5 algorithm tracing questions (e.g. in what order would the
nodes of the following tree be visited in a preorder traversal?),
4 computational complexity (“Big O”) questions, 4 simple recall
questions, and two questions not categorized.

The five multiple choice questions that will figure prominently
in the following analysis are shown in Figures 2, 3, 4, 5 and 6. The
question in Figure 3 is almost the same as a question from Corney
et al. [2], while the other MCQs are unique to this study.

2.2 Explain in Plain English (EiPE) Questions
Prior to the exam, students had limited exposure to explain in
plain English (EiPE) questions. In the final lecture before the exam,
students were advised that there would be EiPE questions in the
exam. They were shown some examples of such questions, with
suitable answers. Furthermore, in the exam itself, students were
given a preamble to the EiPE questions, shown in Figure 7.

3 METHOD
EiPE questions were marked as being either correct or incorrect.
Example correct answers for each EiPE question will be given in
the results section below.

3.1 Contingency Tables
As both the multiple choice and EiPE questions are graded as being
either right or wrong, the combined performance on a given MCQ
and and a given EiPE question can be described in a 2×2 contingency
table as illustrated in Table 1, where the numbers a,b, c, and d
represent the number of students who fell into each of the four

This question is a short answer explain in plain English
question. You will be given some code and you are required
to describe the purpose of it. For example, given the
following code:

if (a < b)
std::cout << a << std::endl;

else
std::cout << b << std::endl;

a good answer would be It prints out the smaller of the two
values held by variables a and b.

Do not give a line by line description of the code. The code
should also not be evaluated on whether it compiles or not,
your task is to determine the intent of the code, not the
ability of the “programmer”.

Figure 7: Preamble to Explain in Plain English Questions.

possible categories. A chi-squared test was generally used to assess
the statistical significance in such contingency tables. When an
individual expected count value was less than 5, a two-tailed Fisher
Exact test was used.

The relationship between two questions was considered to be
statistically significant when p < 0.05. Despite p < 0.05 being the
traditional threshold for significance, the odds in favour of a p-value
just under that threshold being a real effect are about 3:1 [1], and
not the 19 to 1 of statistical folk wisdom. A stronger threshold for
significance is p < 0.01 [1], when the odds of being a real effect are
about 15:1 [1]. The traditional p < 0.05 was adopted so that more
MCQs would come in for consideration, but the reader should be
cautious of any p-value such that 0.01 < p < 0.05

Table 1: A contingency table for two questions

While 278 students attempted the final exam, not all students
attempted all EiPE questions. Such non-answers were omitted from
our analysis, so some of the contingency tables presented in the
results will show a total of less than 278.

3.2 Statistical Measures
An obvious way to consider the combined performance on two
exam questions which are both marked as right or wrong is with
the phi coefficient of correlation, a measure of how often students
answered both questions right or both questions wrong. In terms
of the variables a, b, c and d in Table 1, the phi coefficient is:

ϕ =
(a × d) − (b × c)
√
a × b × c × d

(1)

The phi coefficient does not describe well an asymmetric relation-
ship between a MCQ and a EiPE question. For example, suppose
the MCQ is hard, so that getting the MCQ right may be a good
indication that a student will also get the EiPE question right, but
getting the MCQ wrong is not a good indicator of whether a stu-
dent will get the EiPE right or wrong. Such a relationship is better
captured by the likelihood of sufficiency (LS) [3]. If P(X | Y) is the
conditional probability of X given Y , then:

LS =
P(MCQ riдht | EiPE riдht)
P(MCQ riдht | EiPE wronд) =

d × (a + b)
b × (c + d) (2)

The likelihood of sufficiency is most easily understood when its
effect is described in terms of odds rather than probabilities. The
relationship between odds and probabilities is:

odds =
probability

(1 − probability) (3)

If a probability value is zero then the equivalent odds is also zero. As
a probability approaches 1 the equivalent odds approaches infinity.
An LS value of 1 means that getting the MCQ right does not affect
the odds of getting the EiPE right. An LS value of 2 means that
getting the MCQ right doubles the odds of getting the EiPE right.

Conversely, consider an easy MCQ, so that getting the MCQ
wrong may be a good indication that a student will get the EiPE
question wrong as well, but getting the MCQ right is not a good
indicator of whether a student will get the EiPE right or wrong.
Such a relationship is captured by the likelihood of necessity (LN):

LN =
P(MCQ wronд | EiPE riдht)
P(MCQ wronд | EiPE wronд) =

c × (a + b)
a × (c + d) (4)

An LN value of 1 means that getting the MCQwrong does not affect
the chances of getting the EiPE right. An LN value of 0.5 means
that getting the MCQ wrong halves the odds of getting the EiPE
right.

3.3 Plotting (LS, LN) Values
For a given EiPE, the LS and LN numbers for each MCQ can be
plotted on a Cartesian plane, as shown in Figure 8. The x-axis
corresponds to the LS values and the y-axis corresponds to the
LN values. For an MCQ question with a statistically significant
relationship to the EIPE, if the associated (LS,LN) coordinate pair
fall into any of the shaded regions of Figure 8, the relationship
between that MCQ and EIPE can be described thus:

Region A, "neutral": Whether a student gets the MCQ right or
wrong provides no information as to how the student
performed on the EiPE.

Region B, "easier": TheMCQ is so easy it is unlikely that a student
who gets such a question wrong will get the EiPE right.
However, if a student gets this MCQ right, it provides
no information as to how the student performed on
the EiPE.

Region C, "harder": The MCQwas so hard it is unlikely that a stu-
dent who gets such a question right will get the EiPE

wrong. However, if a student gets this MCQ wrong,
it provides no information as to how the student per-
formed on the EiPE.

Region D, "correlated": While student performance on the MCQ
and the EIPE correlate, the relatively low LS value and
relatively high LN value indicate there is little or no
overlap between the knowledge and skills required for
the MCQ and the EIPE. To express that another way:
high performing students tend to answer hard ques-
tions correctly, irrespective of the question content,
while low performing students tend to get those hard
questions wrong.

Region E, "prerequisite": The LS value is high enough and the
LN value low enough so that the MCQ requires skills
or knowledge of the student that are prerequisite for
answering the EIPE correctly.

Figure 8: A categorization of how MCQ questions relate to
an EiPE question in a plot of (LS,LN) values

For simplicity in introducing the regions in Figure 8, the regions
have been drawn as distinct, whereas in reality the regions overlap.

Note that the categorization of MCQs into five regions of Fig-
ure 8 only applies to MCQs that have a statistically significant
relationship with the EiPE.

Suppose two exam questions, Qx and Qy, have a statistical sig-
nificant relationship. If getting Qx right significantly reduced the
chances of getting Qy right, then Qx or Qy would be a perverse
exam question. The same applies if getting Qx wrong significantly

improved the chances of getting Qy right. It follows that non-
perverse, statistically significant (LS,LN) data points in plots like
Figure 8 appear in the lower right quadrant, where LS>1 and LN<1.
As will be seen in plots of real data in the following "results" sec-
tion, sometimes (LS,LN) data points do appear outside that lower
right quadrant, but only for MCQs that do not have a statistically
significant relationship with the EiPE.

4 RESULTS
In this section, results are presented from 3 of the 5 EiPE questions
in the exam, including the hardest question and the easiest question.

4.1 Q22i: Check for a Sorted Linked List
The code for Q22i is shown in Figure 9. A correct answer is “it
checks if the data values in the linked list are in descending order”.
This question is similar to a question from Corney et al. [2]. For
an answer to be correct, a student had to be explicit about the
descending order. Only 25% of the class answered this question
correctly. Of the 5 EiPE questions in the exam, this was the hardest.

As indicated in Figure 9, the code for this EiPE question was
also used in the MCQ5 tracing question. The exam paper did not
explicitly point out to students that the same code was used in Q22i
and MCQ5. It is unknown how many students did notice that the
code was the same and were able to take advantage of their trace
for MCQ5 to answer Q22i.

Question 22i
Consider the following code:

... In the actual exam, the code for class "node" from MCQ5 (i.e.
Figure 3) was included here in Q22i, except for the "code
snippet" of MCQ5 ...

Assume you have a linked list constructed of such nodes.
What property of the list does calling the function p on the
head of the list test?

Figure 9: Explain in plain English question Q22i.

Table 2 shows statistics for the three statistically significant
MCQs for Q22i (p < 0.05). Only 44% of the class answered MCQ5
correctly, making it the hardest of the 20 MCQs. (Hence the row
beginning with “Rank” in Table 2 shows 20 for MCQ5.) The phi
correlation coefficient and LS value for Q22i and MCQ5 are the
highest for any combination of the 20MCQs and five EiPE questions.
Those high values might be expected, given that MCQ5 and Q22i
share common code.

Tables 3, 4, and 5 show the contingency tables for the relationship
between Q22i and MCQ5, MCQ12 and MCQ14 respectively. While
all three MCQs are significant at the p < 0.05 level, note that only
the MCQ5 tracing question is significant at the p < 0.01 level.

For MCQ5, the data is consistent with a learning hierarchy where
tracing skill precedes explaining skill, not the reverse found by
Harrington and Chen in their study. That is, in Table 3, the number
of students who answered the MCQ tracing question incorrectly
but the EiPE correctly (i.e. 13 in Table 3) is far less than the number

Table 2: The three statistically significant MCQs for Q22i

MCQ5 MCQ12 MCQ14
Percent right 44% 75% 64%

Rank 20 (hardest) 18 19
Significance p <0.0001*** p = 0.02* p = 0.03*

ϕ 0.34 0.15 0.14
LS 2.04 1.2 1.25
LN 0.35 0.44 0.61

of students who answered the MCQ tracing question correctly but
the EiPE incorrectly (i.e. 70 in Table 3).

Table 3: The contingency table for Q22i and MCQ5 (ϕ = 0.34,
LS = 2.04, LN = 0.35, p < 0.0001***)

Q22i & Q5 MCQ Incorrect MCQ Correct
EiPE Incorrect 112 70
EiPE Correct 13 47

Table 4: The contingency table for Q22i andMCQ12 (ϕ = 0.15,
LS = 1.2, LN = 0.44, p < 0.02*)

Q22i & Q12 MCQ Incorrect MCQ Correct
EiPE Incorrect 48 134
EiPE Correct 7 53

Table 5: The contingency table for Q22i andMCQ14 (ϕ = 0.14,
LS = 1.25, LN = 0.61, p < 0.03*)

Q22i & Q14 MCQ Incorrect MCQ Correct
EiPE Incorrect 70 112
EiPE Correct 14 46

Figure 10 plots the (LS,LN) values for all 20 MCQs, for Q22i. In
the figure, only the three MCQs that have a statistically significant
relationship (p < 0.05) with Q22i are labelled — MCQs 5, 12 and 14.
As the key in Figure 11 indicates, MCQ5 is a code tracing question
while the other two are “Big O” questions.

In Figure 10, and also later plots of (LS,LN) values, the two axes
has been scaled so that the horizontal distance on the printed page
from (LS=1, LN=1) to (LS=2, LN=1) is the same as the vertical dis-
tance from (LS=1, LN=1) to (LS=1, LN=0.5). The authors believe
that this scaling has the intuitive visual effect of giving LS and LN
values equal importance.

In Figure 10, and also later plots of (LS,LN) values, the vertical
axis has been compressed for values of LN>1. The compression was
done to conserve space. The highest LN value the authors saw in all
our exam data is shown in this plot, with LN approximately equal
to 1.8. As can be seen in the figure, the LS value associated with
that LN ≈ 1.8 is only slightly less than one and that data point is
not statistically significant (since the data point is not labelled).

Summary: On the basis of Figure 10 and its associated data, the
authors conclude that (1) "Big O" MCQs 12 and 14 are correlated
with this EIPE, but (2) only MCQ5 requires prerequisite knowledge
or skills for this EIPE, which is not surprising, given that this MCQ
and EIPE share most of the same code.

Figure 10: Q22i “Check for a Sorted Linked List ” (LS,LN)

Figure 11: The key for the categorization of MCQ questions
in Figure 10 and the other plots of (LS,LN) values

4.2 Q22ii: Sum Contents of a Vector
The code for Q22ii is shown in Figure 12. A correct answer is “it
sums the contents of a vector”. 68% of the class answered this
question correctly. A question like this was used in the original
Lopez et al. study of CS1 students [7].

Only two MCQs showed a statistically significant relationship
(p < 0.05) to this EiPE question, MCQ5 (see Figure 3) and MCQ12
(see Figure 4). The contingency tables for these two MCQs and this
EiPE question are shown in Tables 6 and 7.

Table 6, is what we the authors of this paper refer to as being
an anomalous contingency table. That is, this table supports the
reverse hierarchy conclusion of Harrington and Chen, with the
number of students who answered MCQ5 incorrectly but EiPE
Q22ii correctly (i.e. 76 students) exceeding the number of students

Question 22ii
In one sentence, explain in plain English what the following
method does:

int w(const std::vector<int>& v) const {
int n = 0;
for(std::vector<int>::iterator itr =

v.begin(); itr < v.end(); ++itr)
{

n = n + *itr;
}
return n;

}

Figure 12: Explain in plain English question Q22ii.

who answered the MCQ correctly but the EiPE incorrectly (i.e. 25
students).

Figure 13 plots the (LS,LN) values for all 20 MCQs, for this EIPE
question. In the figure, only the two MCQs that have a statistically
significant relationship with Q22ii are labelled. One of those la-
belled questions is MCQ5; note that the LS number for MCQ5 is
greater than 1, and the LN number is less than 1, even though the
contingency table (i.e. Table 6) is anomalous.

Table 6: Anomalous contingency table for Q22ii and MCQ5
(ϕ = 0.28, LS = 2.06, LN = 0.6, p < 0.0001***)

Q22ii & Q5 MCQ Incorrect MCQ Correct
EiPE Incorrect 67 25
EiPE Correct 76 97

Table 7: The contingency table forQ22ii andMCQ12 (ϕ = 0.18,
LS = 1.25, LN = 0.5, p < 0.003**)

Q22ii & Q12 MCQ Incorrect MCQ Correct
EiPE Incorrect 31 61
EiPE Correct 30 143

The smallest LS value the authors saw in all their exam data is
shown in Figure 13 in the coordinate pair (LS≈0.85, LN≈1.6). This
data point is also furthest statistically non-significant point, in all
the author’s exam data, from the LS=1 axis and the LN=1 axis, with
LS<1.

Summary: On the basis of Figure 13 and its associated data,
the authors conclude that (1) "Big O" MCQ 12 is correlated with
this EIPE, but (2) only MCQ5 requires prerequisite knowledge or
skills for this EIPE.

4.3 Q22iii: Sorting a Vector
The code for Q22iii is shown in Figure 14. A correct answer is “it
sorts the vector”. A student did not need to specifically mention

Figure 13: Q22ii “Sum” (LS,LN)

bubblesort. This was the easiest of the five EiPEs with 70% of the
class answering correctly.

FiveMCQs showed a statistically significant relationship (p<0.05)
to this EiPE question. The contingency tables for these five MCQs
and this EiPE question are shown in Tables 8 to 12. AlthoughMCQ14
is not a tracing question, it’s contingency table (i.e. Table 11) is an
anomalous contingency table, as the number of students who an-
swered the MCQ incorrectly but the EiPE correctly (i.e. 55 students)
just exceeds the number of students who answered the MCQ cor-
rectly but the EiPE incorrectly (i.e. 44 students).

Table 8: The contingency table for Q22iii andMCQ1 (ϕ = 0.13,
LS = 1.1, LN = 0.48, p < 0.04*)

Q22iii & Q1 MCQ Incorrect MCQ Correct
EiPE Incorrect 13 66
EiPE Correct 14 164

Table 9: The contingency table for Q22iii andMCQ5 (ϕ = 0.21,
LS = 1.07, LN = 0.67, p < 0.0001***)

Q22iii & Q5 MCQ Incorrect MCQ Correct
EiPE Incorrect 15 64
EiPE Correct 20 158

Question 22iii
In one sentence, explain in plain English what the following
method does:

std::vector<int> x(std::vector<int> v){
do {

bool a = false;
for (int i=0; i<v.size()-1; i++){

if (v[i] > v[i+1]){
int temp = v[i+1];
v[i+1] = v[i];
v[i] = temp;
a = true;

}
}

} while (!a);

return v;
}

Figure 14: Explain in plain English question Q22iii.

Table 10: The contingency table for Q22iii and MCQ12 (ϕ =
0.19, LS = 1.26, LN = 0.49, p < 0.002***)

Q22iii & Q12 MCQ Incorrect MCQ Correct
EiPE Incorrect 27 52
EiPE Correct 30 148

Table 11: The anomalous contingency table for Q22iii and
MCQ14 (ϕ = 0.13, LS = 1.24, LN = 0.7, p < 0.04*)

Q22iii & Q14 MCQ Incorrect MCQ Correct
EiPE Incorrect 35 44
EiPE Correct 55 123

Table 12: The contingency table for Q22iii and MCQ17 (ϕ =
0.15, LS = 1.11, LN = 0.41, p < 0.02*)

Q22iii & Q17 MCQ Incorrect MCQ Correct
EiPE Incorrect 12 67
EiPE Correct 11 167

Figure 15 plots the (LS,LN) values for all 20 MCQs, for Q22iii. In
the figure, only the five MCQs that have a statistically significant
relationshipwith Q22iii are labelled. Three of the five labelledMCQs
– 5, 12, and 14 – also occurred in Figure 10 and two of those MCQs
– 5 and 12 – appeared in Figure 13. In this plot, MCQ5 is not as far
to the lower right as in the earlier Figures, which is to be expected,
given that the code traced in MCQ5 is different from, and harder
than, the code in this EiPE question. Never the less, the data point
for MCQ5 is distant from the other statistically significant MCQs.
The data points for MCQs 12 and 14 in Figure 15 are roughly in the
same position as in Figures 10 and 13.

MCQ17 was also statistically significant for this EiPE. The text
of that MCQ is shown in Figure 6.

The final statistically significant MCQ in Figure 15 is MCQ1,
although it is only just statistically significant (p = 0.04). The text of
that MCQ is shown in Figure 2. It is a tracing question, like MCQ5,
but a much easier tracing question.

Figure 15: Q22iii “Sorting a Vector” (LS,LN)

Summary: On the basis of Figure 15 and its associated data,
the authors conclude that (1) MCQs 1 and 17 are type B "easier"
questions for this EiPE, (2) MCQs 12 and 14 are type D questions
that correlate with this EIPE, whereas (3) MCQ5 is a type E question,
which requires prerequisite knowledge or skills for this EIPE.

5 DISCUSSION
In the previous section, results were presented for 3 of the 5 EiPE
questions in the exam. Page limits do not allow for the presentation
of all five questions, but the plots of (LS,LN) were similar in all five
cases, as follows:

• Tracing question MCQ5 (see Figure 3) was always statisti-
cally significant (p < 0.05), and was well removed from the
other data points, appearing to the lower right, indicating
both considerable sufficiency and necessity.

• MCQ 12, the “Big O” question shown in Figure 4 was also
always statistically significant (p < 0.05).

• A similar “Big O” question, MCQ14 (see Figure 5), was sta-
tistically significant for four of the five EiPEs (p < 0.05).

• In all cases except for MCQ5, when a question was statisti-
cally significant, it appeared in roughly the same position in
the plots of (LS,LN). MCQ5 is an exception because it had an
especially high LS number for the EiPE question with which
it shared code, Q22i.

Also, the easy tracing question MCQ1 shown in Figure 2 was statis-
tically significant for two of the five EiPEs (p < 0.05).

As the authors wrote earlier in this paper, some caution should
be exercised with the MCQs and EIPEs that exhibit a statistical
relationship where 0.01 < p < 0.05. All the p-values described
in this paper are an indication of the likelihood of a successful
replication, but only if two important and very restrictive criteria
are satisfied: (1) the students in the replication have a similar level of
programming skill as the students studied in this paper, and (2) the
students in the replication are taught the same way as the students
described in this paper. If our same exam questions were used and
analyzed at another institution, with different students and different
teaching methods, the only relationship we are confident might be
reproduced is the relationship between MCQ5 and the EiPEs. That
confidence is not just based on the very low p-values for MCQ5.
At least just as important are the strong LS and LN numbers for
MCQ5.

5.1 Anomalous Contingency Tables
In their data, Harrington and Cheng observed higher writing scores
than tracing scores. (See Figure 5 in their paper.) That observation
led them to conclude that the unidirectional nature of the hierarchy
in CS1 students did not apply by the time students studied data
structures.

In this paper, which is a study of the relationship between tracing
and explaining, the analogous phenomenon (i.e. explaining scores
higher than tracing scores) was sometimes observed in anomalous
contingency tables where the number of students who answer an
MCQ incorrectly but the EiPE correctly (i.e. cell c in Table 1) exceeds
the number of students who answer the MCQ correctly but the
EiPE incorrectly (i.e. cell b in Table 1). Of the seven contingency
tables that showed a statistical relationship (p < 0.05) between
any of the five EIPE questions and a tracing question, two tables
were anomalous, which is a high ratio that needs explaining if the
characterization of “anomalous” is warranted.

One of the anomalous contingency tables involving a tracing
question was the table for MCQ5 and Q22ii (see Table 6). MCQ5 is
a difficult tracing question, involving recursion. In contrast, EiPE
Q22ii is a simple question – simple even for CS1 students – as the
code merely sums the integer elements of a vector. That the MCQ
is hard and the EiPE is easy has led the authors of this paper to
the conjecture that anomalous contingency tables are an indication
of a mismatch in difficulty between a tracing question and the
explanation question. That conjecture then leads to a guideline
when devising questions to be used to study the learning hierarchy:
the code in a tracing question should ideally not contain programming
constructs that are not present and considered more advanced than
the constructs in the explanation/writing questions.

The other anomalous contingency table for a tracing question
involved an EiPE that is not included in this paper. The EiPE con-
tained code that incremented each each integer in a vector. The

tracing question was the difficult MCQ5 again. Thus th is other
anomalous contingency table is consistent with our conjecture that
anomalous contingency tables are an indication of a mismatch in
difficulty between a tracing question and an explanation question.

5.2 Piagetian Theory and Goldilocks Questions
After the early empirical work on a learning hierarchy in CS1 stu-
dents, a neo-Piagetian theory was developed to explain the devel-
opmental stages of the novice programmer [5, 10]. Harrington and
Chen’s claims about the hierarchy in data structures students are
not compatible with neo-Piagetian theory. However, their claims
may be compatible with a strict interpretation of classical Piagetian
theory. In classical Piagetian theory, once a student has acquired
a higher stage of reasoning, the student tends not to regress to a
lower stage. That is, in terms of learning to program, while a CS1
student may rely heavily on tracing to understand code, by the
time that student has progressed to studying data structures, the
student may have acquired the ability to read a piece of code and
deduce its purpose, without needing to trace the code. In contrast,
according to neo-Piagetian theory, while a data structures student
might read code and deduce the purpose of code containing familiar
concepts, and not feel the need to trace the code, that same student
may regress to a lower form of reasoning (i.e. tracing) as part of
learning to accommodate a strange new concept (e.g. recursion).

For empirical studies of the learning hierarchy, neo-Piagetian
theory implies the need for “Goldilocks” questions, that are not
too hard and not too easy, but are just the right level of novelty
and difficulty so that a student will exhibit a regression to trac-
ing code before being able to explain and write similar pieces of
code. Thus, not every combination of tracing questions and EIPE
questions will generate empirical evidence for a learning hierarchy.
Furthermore, if a set of tracing and EiPE questions does generate
empirical evidence for a learning hierarchy using one set of stu-
dents, those same questions may not generate empirical evidence
for a learning hierarchy with a set of different students. Prior to the
work of Harrington and Chen, researchers studying the hierarchy
have relied upon their knowledge of their own students to generate
questions with just the right level of novelty and difficulty for their
own students. To express this pithily: Piagetian theory is a theory of
development, so empirical studies must use test questions consistent
with the students’ level of development.

With the aim of systematically constructing tracing/explain ques-
tions of similar difficulty to the writing questions, Harrington and
Cheng used a novel and clever approach. They wrote two exam
papers, and had half their class do each paper. The code for the
tracing question in one paper was a solution for the code writing
question in the other exam paper. They argued plausibly that this
approach is better than the ad hoc approaches used in earlier stud-
ies. However, there is an ad hoc asymmetry even in this two exam
approach – turning a solution for a code writing question into a
tracing question requires the addition of input data that needs to be
traced, so the difficulty of a tracing question is not just determined
by the code, but also by the input data. Perhaps with the implicit
recognition of this asymmetry, Harrington and Cheng had their
students complete two traces on each piece of code, where the input
for one trace was simpler than the input for the second trace. The

two tracing problems carried equal weight in the point scoring
system. But even with two sets of tracing data, some intuition and
perhaps even some trial and error is still required to get the right
level of difficulty.

5.3 Tracing and the Full Lopez Hierarchy
Tracing question MCQ5 was a strong predictor for all five EiPEs
that the authors studied. In contrast, tracing question MCQ1 (see
Figure 2) only appeared in one plot of (LS,LN) values, Figure 15,
where it just met the threshold for statistical significance (p = 0.04).

The differing importance of MCQ1 and MCQ5 is consistent with
the complete Lopez hierarchy [7]. Figure 1 in this paper only shows
the upper portion of the Lopez hierarchy. The complete Lopez
hierarchy contains two sets of tracing questions. The harder tracing
questions, which usually involved some iterative process on an
array, are the tracing questions shown in Figure 1. Not shown in
Figure 1 is a separate and easier set of tracing questions that appear
in the lower portion of the complete Lopez hierarchy.

That MCQ1 is (just) statistically significant for EiPE Q22iii but
not statistically significant for the other EiPEs is probably because
Q22iii is the easiest of the five EiPEs.

5.4 Tracing, Explaining and Partial Scores
What Harrington and Cheng refer to as their “tracing” question is
actually an equally weighted combination of tracing and explana-
tion. As they wrote in their paper:

... Students were then asked to trace the output of the
function on a simple tree, and then a more complex
one. Finally students were asked to provide a sensible
name for the function and provide a docstring that
clearly explained what the function does. 2 marks
were awarded for tracing the simple tree, 2 marks for
the complicated tree, and 4 marks for the docstring.

The authors of this paper regard the provision of a sensible
function name and a docstring comment as being an exercise in
code explanation – arguably a good way of testing code explanation.
So the reader should be aware that when Harrington and Chen
refer to "tracing", they are referring to a combination of tracing and
explaining. We conjecture that a possible weakness of combining
tracing and explaining as Harrington and Chen have done is that in
the Lopez hierarchy it is the combination of some skill in tracing and
some skill in explaining that leads to competence in writing. When
the tracing and explaining scores are entwined as in Harrington
and Chen’s study, it is not clear if a partial score indicates sufficient
skill in both tracing and explaining.

Harrington and Cheng did not clarify what type of answers
received a partial score. In contrast, most of the earlier work on
the learning hierarchy graded tracing and explaining questions in
a binary fashion: as being right or wrong. There is no paradigm yet
for studying the learning hierarchy, so Harrington and Cheng were
not wrong to use partial scores, but perhaps their use of partial
scores accounts for some of their differences from other studies of
the hierarchy.

5.5 The Big O
MCQ12 and MCQ14 are both “Big O” questions that correlate with
several EiPE questions. At least part of the reason why these MCQs
correlated with EiPE questions is indicated by Table 2, in the row
beginning with “Rank”. As shown in the table, these Big O questions
are two of the three hardest MCQs in the exam (along with MCQ5).
Irrespective of the content of questions, good students tend to get
hard questions right, while poor students tend to get hard questions
wrong.

As the authors wrote earlier in this paper, the regions in Figure
8 overlap. There is probably no algorithm, using statistics alone, to
unambiguously separate type D "correlated" questions from type E
"prerequisite" questions. In addition to the statistics, the content of
the questions must considered. These two Big O questions do not
feature any code, let alone data structures, and so that, in conjunc-
tion with the statistics, led the authors to classify these two Big O
questions as "correlated".

6 CONCLUSION
With respect to our first research question, the results described
in this paper have led us to the conjecture that Harrington and
Cheng’s reversal effect occurs when there is a mismatch in the
relative difficulty of tracing, explaining and writing questions. Of
course, this paper is only the third study of the learning hierarchy
with respect to students studying data structures, so further studies
are warranted.

With respect to our second research question, despite our exam
containing several different types of MCQs, we did not identify
any new type of MCQ question that appear to require prerequisite
knowledge or skills for explaining code – tracing remains the only
skill identified thus far that is prerequisite for explaining code.

Given the need for “Goldilocks” questions, some readers may
argue that the Learning Hierarchy is a tautology: it exists only for
data that confirms its existence. The authors argue that such a posi-
tion is severe. Even laws of physics, such as Newtonian mechanics,
only apply under a given range of circumstances. The numerous
published studies that have presented data supporting a hierar-
chy (albeit that most are for CS1 students) suggest that the range
of circumstances under which the hierarchy applies is not overly
restricted or quirky.

This paper has been framed within a positivistic framework.
That is, the paper is framed as a study of the possible existence
of an objectively real hierarchy, in the same way as science stud-
ies, for example, Newton’s theory of gravitation. However, from a
pragmatic pedagogical point of view, it may be more productive
to pursue the Learning Hierarchy as if it is a social construction.
That is, it may be more productive to think of the hierarchy as
a pedagogical framework for teaching programming, where trac-
ing code and reading/explaining code are taught before students
begin to write large quantities of code. From that social construc-
tion perspective, a good tracing question and a good explanation
question are those that are most useful in preparing a student to
write code. Perhaps the type of empirical evidence presented in this
paper does not demonstrate the existence of the hierarchy in the
same way that the orbit of the moon demonstrates the existence
of gravity. Instead, perhaps empirical evidence like that presented

in this paper demonstrates that suitable tracing, explaining and
writing questions have been constructed for a pedagogy in which
tracing and reading code are to be taught prior to students writing
their own code.

7 ACKNOWLEDGMENT
The authors thank Brian Harrington and Nick Cheng for sharing
their exam questions.

REFERENCES
[1] D. Colquhoun. 2017. The Reproducibility Of Research And The Misinterpretation

Of P Values. Royal Society Open Science 4, 12 (Dec. 2017). http://dx.doi.org/10.
1098/rsos.171085

[2] Malcolm Corney, Sue Fitzgerald, Brian Hanks, Raymond Lister, Renee McCauley,
and Laurie Murphy. 2014. ’Explain in Plain English’ Questions Revisited: Data
Structures Problems. In Proceedings of the 45th ACM Technical Symposium on
Computer Science Education (SIGCSE ’14). ACM, New York, NY, USA, 591–596.
https://doi.org/10.1145/2538862.2538911

[3] R. Duda, J. Gaschnig, and P. Hart. 1981. Model Design in the Prospector Consul-
tant System for Mineral Exploration. In Readings in Artificial Intelligence, B. L.
Webber and N. J. Nilsson (Eds.). Kaufmann, Los Altos, CA, 334–348.

[4] Brian Harrington and Nick Cheng. 2018. Tracing vs. Writing Code: Beyond the
Learning Hierarchy. In Proceedings of the 49th ACM Technical Symposium on
Computer Science Education (SIGCSE ’18). ACM, New York, NY, USA, 423–428.
https://doi.org/10.1145/3159450.3159530

[5] Raymond Lister. 2011. Concrete and Other neo-Piagetian Forms of Reasoning in
the Novice Programmer. In Proceedings of the Thirteenth Australasian Comput-
ing Education Conference - Volume 114 (ACE ’11). Australian Computer Society,
Inc., Darlinghurst, Australia, Australia, 9–18. http://dl.acm.org/citation.cfm?id=
2459936.2459938

[6] Raymond Lister, Colin Fidge, and Donna Teague. 2009. Further Evidence of a
Relationship Between Explaining, Tracing and Writing Skills in Introductory
Programming. SIGCSE Bull. 41, 3 (July 2009), 161–165. https://doi.org/10.1145/
1595496.1562930

[7] Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. 2008. Rela-
tionships Between Reading, Tracing and Writing Skills in Introductory Pro-
gramming. In Proceedings of the Fourth International Workshop on Comput-
ing Education Research (ICER ’08). ACM, New York, NY, USA, 101–112. https:
//doi.org/10.1145/1404520.1404531

[8] Laurie Murphy, Sue Fitzgerald, Raymond Lister, and Renée McCauley. 2012.
Ability to ’Explain in Plain English’ Linked to Proficiency in Computer-based
Programming. In Proceedings of the Ninth Annual International Conference on
International Computing Education Research (ICER ’12). ACM, New York, NY, USA,
111–118. https://doi.org/10.1145/2361276.2361299

[9] Sue Sentance, Jane Waite, and Maria Kallia. 2019. Teaching computer pro-
gramming with PRIMM: a sociocultural perspective. Computer Science Edu-
cation 29, 2-3 (2019), 136–176. https://doi.org/10.1080/08993408.2019.1608781
arXiv:https://doi.org/10.1080/08993408.2019.1608781

[10] Donna Teague and Raymond Lister. 2014. Longitudinal Think Aloud Study
of a Novice Programmer. In Proceedings of the Sixteenth Australasian Comput-
ing Education Conference - Volume 148 (ACE ’14). Australian Computer Society,
Inc., Darlinghurst, Australia, Australia, 41–50. http://dl.acm.org/citation.cfm?
id=2667490.2667495

[11] Anne Venables, Grace Tan, and Raymond Lister. 2009. A Closer Look at Tracing,
Explaining and Code Writing Skills in the Novice Programmer. In Proceedings of
the Fifth InternationalWorkshop on Computing Education ResearchWorkshop (ICER
’09). ACM, New York, NY, USA, 117–128. https://doi.org/10.1145/1584322.1584336

[12] Benjamin Xie, Dastyni Loksa, Greg L. Nelson, Matthew J. Davidson, Dongsheng
Dong, Harrison Kwik, Alex Hui Tan, Leanne Hwa, Min Li, and Andrew J. Ko.
2019. A theory of instruction for introductory programming skills. Computer
Science Education 0, 0 (2019), 1–49. https://doi.org/10.1080/08993408.2019.1565235
arXiv:https://doi.org/10.1080/08993408.2019.1565235

http://dx.doi.org/10.1098/rsos.171085
http://dx.doi.org/10.1098/rsos.171085
https://doi.org/10.1145/2538862.2538911
https://doi.org/10.1145/3159450.3159530
http://dl.acm.org/citation.cfm?id=2459936.2459938
http://dl.acm.org/citation.cfm?id=2459936.2459938
https://doi.org/10.1145/1595496.1562930
https://doi.org/10.1145/1595496.1562930
https://doi.org/10.1145/1404520.1404531
https://doi.org/10.1145/1404520.1404531
https://doi.org/10.1145/2361276.2361299
https://doi.org/10.1080/08993408.2019.1608781
http://arxiv.org/abs/https://doi.org/10.1080/08993408.2019.1608781
http://dl.acm.org/citation.cfm?id=2667490.2667495
http://dl.acm.org/citation.cfm?id=2667490.2667495
https://doi.org/10.1145/1584322.1584336
https://doi.org/10.1080/08993408.2019.1565235
http://arxiv.org/abs/https://doi.org/10.1080/08993408.2019.1565235

	Abstract
	1 Introduction
	1.1 Our Students and their Context

	2 Our Final Exam
	2.1 The Multiple Choice Exam Questions
	2.2 Explain in Plain English (EiPE) Questions

	3 Method
	3.1 Contingency Tables
	3.2 Statistical Measures
	3.3 Plotting (LS, LN) Values

	4 Results
	4.1 Q22i: Check for a Sorted Linked List
	4.2 Q22ii: Sum Contents of a Vector
	4.3 Q22iii: Sorting a Vector

	5 Discussion
	5.1 Anomalous Contingency Tables
	5.2 Piagetian Theory and Goldilocks Questions
	5.3 Tracing and the Full Lopez Hierarchy
	5.4 Tracing, Explaining and Partial Scores
	5.5 The Big O

	6 Conclusion
	7 Acknowledgment
	References

