
Research Highlights (Required)

• Solve object detection by a pixel-wise paradigm.

• Anchor-free detector can completely avoid all the hyper parameters related to the anchor box.

• BiFPN effectively solved the problems related to multi-scale features.

• Soft-Weighted re-weights the quality of detection results to make detector more stable.
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ABSTRACT

We propose an anchor-free object detector that combines a weighted bi-directional Feature Pyramid
Network (BiFPN) and Soft Anchor Point Detector to address the object detection problem in a pixel–
wise paradigm. The current mainstream object detection methods are anchor-based, which require to
set hyper parameters such as scale and aspect ratio. This requires strong prior knowledge and can be
difficult to design. Therefore, we propose an anchor-free detector that completely avoids the complex
calculations and all the hyper parameters related to the anchor box by eliminating the predefined set of
anchor boxes in an anchor-free way. Anchor-free detectors are essentially dense prediction methods.
Although the huge solution space can yield high recall, simple anchor-free methods tend to return too
many false positives, which leads to the problem of semantic ambiguity caused by the high overlap of
object centers. Therefore, we propose BiFPN to alleviate the impact of high overlap which also effec-
tively addresses the problems related to multi-scale features. Moreover, in order to utilize the power
of feature pyramid better, we tackle the issues with a novel training strategy that involves two soften
optimization techniques, i.e., soft-weighted anchor points and soft-selected pyramid levels. This train-
ing strategy further re-weights the quality of the detection results to make our detection results more
stable.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

As the cornerstone of image understanding and computer vi-
sion, object detection is to solve instance segmentation [1, 2, 3],
object tracking [4, 5, 6, 7], pose estimation [8, 9, 10, 11], a basis
for more complex higher level of image description [12, 13, 14],
action recognition [15, 16, 17] and other visual tasks. Ob-
ject detection has a wide range of applications in many areas
of artificial intelligence and information technology, includ-
ing robotic vision, consumer electronics, security, autonomous
driving, human-computer interaction, content-based image re-
trieval, intelligent video surveillance, and augmented reality.
Due to the development of deep convolutional neural networks
and well-labeled datasets, the performance of object detectors
has been greatly improved.

All current mainstream detectors, such as Faster R-
CNN [18], R-FCN [19], Mask R-CNN [2], SSD [20],
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DSOD [21], DCN [22], YOLOv2 [23], YOLOv3 [24] and
YOLOv4 [25], etc. are anchor based approaches, which rely
on a set of predefined anchor boxes. Although the use of an-
chor boxes has achieved great success, it also brings some in-
evitable drawbacks: 1) Use of predefined anchor boxes requires
additional hyper-parameters such as the size, aspect ratio and
number of anchor boxes, which settings have an impact on the
detection performance, so they all need to be adjusted carefully;
2) Since the size and aspect ratio of the predefined anchor box
are fixed, the detector may have difficulty in detecting objects
with large changes in shape, especially small objects. The pre-
defined anchor boxes negatively affect the generalization of the
detectors, because for different datasets, it may be necessary to
set different predefined anchor boxes to achieve the best effect
of the detector.

Therefore, the scale variation is an urgent problem for object
detection. To achieve scale invariability, the state-of-the-art de-
tectors construct feature pyramids or multi-level feature towers.
Also, different levels of feature layers are used to predict objects
of different scales. For example, although the shallow feature
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layer with larger length and width has less semantic informa-
tion, it contains more detailed information and is suitable for
predicting smaller objects. On the contrary, the deep feature
layer does not have so much detailed information, but it con-
tains richer semantic information and is suitable for predicting
larger objects. The design of feature pyramids integrated with
anchor boxes has achieved good performance on object detec-
tion benchmarks. However, in the training process, instances of
different sizes are allocated to different feature layers for pre-
diction, and this allocation rule is also artificially prescribed.
Each instance always matches the closest anchor box based on
the Intersection-over-Union (IoU) ratio. Obviously this has lim-
itations. Why don’t we let the model choose the most suitable
feature layer for different instances? Moreover, each instance is
limited to a single level, which leads to suboptimal utilization
of the power of the feature pyramid.

In order to address the above two drawbacks, we propose an
anchor-free optimization strategy to soft-select pyramid levels.
Anchor-free detectors do not have predefined hyper-parameters
associated with the anchor boxes, and so do not need to search
for the optimal values for these hyper-parameters. Also, there
is no need to set different predefined anchor boxes for differ-
ent datasets, so it has better generalization ability. Besides, we
propose a meta-selection network which can be jointly trained
with the detector to predict the weight of the feature layer of
each instance to achieve pyramid-level soft selection. In ad-
dition, not all pixels in the feature layer corresponding to an
instance contain useful semantic information, and the amount
of information contained in each pixel is also different. There-
fore, we adopt a soft-weighted anchor point strategy, where the
contribution of a positive anchor point to the network loss is
re-weighted based on the anchor point’s distance to the object
center and the soft feature selection weights.

At the back of backbone network, we use BiFPN to perform
multi-scale feature fusion effectively and efficiently to build a
feature pyramid. Then, we scale the ground-truth boxes to the
size corresponding to the feature pyramid and intercept the fea-
ture pyramid fragment. These fragments are then resized to
the input shape of the meta-selection network, and passed into
the meta-selection network to obtain the weight of each feature
layer corresponding to each ground-truth box, which we call
‘meta-selection weight’. Then, we use soft-weighted anchor
points to weight the pixels on the feature pyramid and multiply
them with the corresponding meta-selection weight to get our
final soft-weight. Finally, the soft-weight is used for the calcu-
lation of regression and classification loss is used to train our
model.

2. Related Work

2.1. Anchor-based Detectors

Since the RPN [18] was proposed in the field of object de-
tection, anchor-based methods have become the mainstream
of object detection models, such as Faster R-CNN, Mask R-
CNN, Cascade R-CNN [26], Dynamic R-CNN [27], SSD, Reti-
naNet [28], and YOLO [29, 23, 24, 25]. In anchor-based detec-
tors, predefined dense anchor boxes are generated by using the

anchor mechanism that pre-sets several bounding boxes with
different scales and aspect ratios for each pixel of the feature
map, so that the network can perform target classification and
bounding box coordinate regression on this basis directly. The
predefined dense anchor boxes can effectively improve the net-
work target recall ability, which is very effective for detecting
small objects. Moreover, the addition of the predefined anchor
boxes makes the training of the model more stable.

However, the hyper-parameters that need to be set for pre-
defined anchor boxes, such as scale and aspect ratio, requires
strong prior knowledge and are difficult to design. Also, there
are so many redundant boxes produced. After all, the number
of objects in an image is limited. Setting a large number of an-
chor boxes based on each anchor will generate a large number
of easy-samples, that is, a background box that does not contain
the object at all. This will cause a serious imbalance of posi-
tive and negative samples, which is one of the reasons why it
is difficult for one-stage algorithms to compete with two-stage
algorithms.

2.2. Anchor-free Detectors

Since the CornerNet [30] was proposed in August 2018,
anchor-free object detection models have emerged one after an-
other, and have reached a blowout state recently, announcing
the rise of anchor-free object detection models. In fact, anchor-
free is not a new concept. YOLOv1 [29] and DenseBox [31]
are the earliest anchor-free models in the object detection field,
and the recent ones such as FASF [32], FCOS [33], and Fove-
aBox [34] can all see the shadow of DenseBox. The anchor-
free detectors can be roughly divided into anchor-point detec-
tion and key-point detection. The anchor-point detectors, such
as Densebox, Unitbox [35], FCOS, FSAF or Foveabox, en-
code the ground-truth boxes as anchor points with correspond-
ing point-to-boundary distances, where anchor points are pix-
els on the feature pyramid maps and their positions are associ-
ated with features. Key-point detectors, such as CornerNet, Ex-
tremeNet [36], CenterNet [37], decode the key points into pre-
diction boxes by predicting the positions of several key points
of the bounding box, e.g., corners, centers, or extreme points.

2.3. Multi-scale Feature Fusion

Early target detection algorithms, whether single-stage or
multi-stage, usually connect the detection head directly to the
last layer of backbone’s feature map for object detection. The
output feature map resolution is 1/32 of the input image reso-
lution, which is too small to be effective for object detection.
Therefore, the MaxPooling of the last stage is generally re-
moved or the conv layer with stride = 2 is changed to a conv
layer with stride = 1 to increase the resolution of the last
layer of feature maps. We call several layers with the same
feature map resolution in the backbone as a stage. Later re-
search found that in a single-stage object detection algorithm,
a single-stage feature map cannot be used to effectively char-
acterize objects of various scales at the same time. Therefore,
the later object detection algorithms gradually developed to use
the feature maps of different stages to form a feature pyramid
network (FPN [38]) to characterize objects of different scales
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Fig. 1. Network architecture of the proposed anchor-free object detector. The backbone network is EfficientNet B0, and the feature pyramid network is
BiFPN which is repeated three times and shared classification/regression network.

and then to perform object detection based on the feature pyra-
mid, i.e., entered the FPN era. The evolution of FPN is mainly
divided into four stages: 1) No fusion, such as SSD; 2) Top-
down one-way fusion, such as Faster RCNN, Mask RCNN,
Yolov3, RetinaNet, Cascade RCNN; 3) Simple bi-directional
fusion, such as PANet [39]; 4) Complex bi-directional fusion,
such as ASFF [40], NAS-FPN [41]. In this paper, iorder to ob-
tain more excellent feature maps, we propose BiFPN based on
bi-directional fusion.

3. Anchor-Free Object Detector

In this section, we mainly demonstrate our model from the
following aspects: 1) An overall introduction to our network
structure; 2) How to construct BiFPN to realize multi-scale fea-
ture fusion; 3) The design of supervision objective; 4) Anchor-
point weighting strategy; 5) Pyramid-level weighting strategy;
6) The design of the loss function.

3.1. Network Architecture

The architecture of the anchor-free object detector is shown
in Fig. 1. First, the picture of size W × H is input into the
EfficientNet-B0 [42] backbone network, and the three feature
layers Ci with the width and height of W/2i × H/2i with i = 3,
4, 5 can be obtained. Then, we simply process Ci to get Pin

l as
the input of the BiFPN module to construct our feature pyra-
mid with levels from P3 through P7. The resolution of Pl is
W/2l × H/2l, and l represents the level of feature layer. Specif-
ically, a 1 × 1 conv layer is attached to the feature map C3, C4,
and C5 followed by the BatchNormalization [43]. It adjusts the
number of channels to get Pin

3 , Pin
4 , and Pin

5 . At the same time, a
1 × 1 conv layer is attached to the feature map C5 followed by
a MaxPooling2D layer with pool size = 3 and strides = 2. In
addition to adjusting the number of channels, it also performs a

downsampling operation to get Pin
6 . Then we perform the same

downsampling operation on Pin
6 to get Pin

7 . After obtaining the
initial Pin

l , we can perform feature fusion through the BiFPN
module to obtain the final feature pyramid with richer seman-
tics and details. The resolution of each layer of the feature pyra-
mid is different, so different feature layers will be used to detect
objects of different scales. But they all share the same detection
head. The detection head is divided into classification subnet
and regression subnet. The classification subnet is used to pre-
dict the confidence of the spatial position of K objects for each
anchor-point, where K represents the number of categories of
objects in the dataset used for training. The regression sub-
net is used to predict the 4-dimensional class-agnostic offset for
each anchor-point which represents the distance from the an-
chor point to the left, top, right, and bottom of the prediction
box if the anchor-point’s confidence exceeds the threshold.

3.2. BiFPN

The features generated by backbone are generally divided
into stages, which are respectively denoted as C1, C2, C3, C4,
C5, C6, C7, etc. The number in it is the same as the number of
the stage, which represents the number of times the resolution
is halved. For example, C2 represents the feature map output of
Stage 2, the resolution is 1/4 of that of the input image, and C5
represents the feature map output of Stage 5, which resolution
is 1/32 of the input image. FPN [38] will take the features of
different resolutions generated by the backbone as input, then
perform feature fusion and output the fused features. The out-
put features are generally marked with P as the number. For
example, the input of FPN is Cl, and the output after fusion is
Pl, where l represents the level of feature layers. This process
can be expressed in mathematical formulas as Pl = f (Cl). Be-
fore the FPN was proposed, the typical representative model of
non-fusion, but also using multi-scale features, is the famous
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Fig. 2. The evolution of FPN-(a) No fusion; (b) Top-down direction fusion; (c) Simple bi-direction fusion; (d) Complex bi-direction fusion.

SSD, which directly uses the feature maps of different stages
to be responsible for the detection of objects of different scales,
as shown in Fig. 2(a). With the proposal of FPN, later algo-
rithms such as Faster RCNN, Mask RCNN, Yolov3, RetinaNet
and Cascade RCNN have introduced FPN. Although the de-
tails may be different, they are all top-down one-way fusions, as
shown in Fig. 2(b). After that, PANet first proposed a bottom-
up secondary fusion model, and added a bottom-up fusion path
based on the FPN in Faster/Master/Cascade RCNN, as shown
in Fig. 2(c). The proposal of PANet proves the effectiveness of
two-way fusion. Because its two-way fusion is relatively sim-
ple, many papers have gone further in the direction of FPN and
tried more complicated two-way fusion, as shown in Fig. 2(d).

Therefore, we also propose a complex two-way fusion fea-
ture network which is called bi-directional feature pyramid net-
work (BiFPN). The specific details of its structure are shown
in Fig. 3. When fusing features with different resolutions, we
first resize them to the same resolution, and then aggregate
them. Since different input features have different resolutions,
they usually contribute unevenly to the output features. There-
fore, we add an additional weight to each input and let the net-
work learn the importance of each input feature. The weighting
method is:

O =
∑

i
wi

ε +
∑

jw j
· Ii, (1)

where Ii is the input, wi is a learnable weight and Relu [44] is
used for each update to ensure that its value is greater than 0,
and ε is a small fractional, which main function is to prevent
the value of the denominator is equal to 0. To facilitate under-
standing, we describe two fusion features at level 5 in BiFPN:

Ptd
5 = C(

w1 · Pin
5 + w2 · R(Pin

6 ) + w3 · R(Ptd
6 )

w1 + w2 + w3 + ε
)

Pout
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(w
′

1 · P
in
5 + w

′

2 · P
td
5 + w

′

3 · R(Ptd
6 ) + w

′

4 · R(Pout
4 ))

(w′

1 + w′

2 + w′

3 + w′

4 + ε)
)

(2)

where C represents the depthwise separable convolutional [45]
operation, and R represents the up-sampling or down-sampling
operation for resolution matching.

3.3. Supervision Targets

Before explaining supervision targets, we must introduce the
definition of some related concepts so that it can be easier to
understand.

As we mentioned before, Pl represents the l-th layer in the
feature layer, where l belongs to 3 to 5, and each feature layer
Pl has W/2l × H/2l pixels, so we define the pixel points on
the feature layer as anchor-points. For each anchor-point on
each feature layer, we use pli j to represent, where (i, j) with
i = 0, 1, ...,W/2l − 1 and j = 0, 1, ...,H/2l − 1 representing the
position of the pixel in the l-level feature layer. And each pli j

can find its corresponding position (Xli j,Yli j) in the input image
through the mapping relationship between Xli j = 2l(i + 0.5) and
Yli j = 2l( j + 0.5). For a ground-truth box, most of its semantic
information is concentrated in the middle area, while the edge
part contains less useful information. In addition, the informa-
tion contained in the pixels on the edge that do not include in-
stance is not helpful for the classification and regression predic-
tion of the instance. On the contrary, they will provide wrong
information and affect the accuracy of the prediction. There-
fore, we define the effective box Be as proportional regions of a
ground-truth instance box B = (c, x, y,w, h) controlled by con-
stant scale factors ε, i.e., Be = (c, x, y, εw, εh) where c is the
class ID, (x, y) is the box center and w, h are box width and
height respectively. We set ε = 0.2. For each anchor-point, if
and only if it corresponds to the position (Xli j,Yli j) in the input
image is within the range of the effective box Be. We regard
this anchor-point as a positive sample, otherwise it is a negative
sample.

Supervision targets are composed of classification targets and
regression targets. The classification target is a K-dimensional
vector which number is equal to the number of all anchor-points
in the five feature layers, and each dimension corresponds to
one class. Therefore, for each effective anchor-point, its classi-
fication target is a K-dimensional vector with a value of 1 in the
c-th dimension and a value of 0 in the remaining dimensions,
and for a negative sample, its value is all 0. The regression
target is a 4-dimensional vector agnostic to classes, which cor-
responds to the normalized distance d = (dl, dt, dr, db) from the
anchor-point to the left, top, right, and bottom boundaries of B
respectively. The calculation formula of distance is shown in
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Fig. 3. The architecture of the bi-directional feature pyramid network (BiFPN). The Conv represents the depthwise separable convolution. Upsample and
Maxpool represent the operation of doubling and halving the resolution, respectively.

Fig. 4. Supervision targets for an instance. We only visualize the supervised
targets of all anchor-points on a feature layer processed by the detection
head.

Eq. (3),

dl =
1

S 2l [Xli j − (x − w/2)]

dt =
1

S 2l [Yli j − (y − h/2)]

dr =
1

S 2l [(x + w/2) − Xli j]

db =
1

S 2l [(y + h/2) − Yli j]

(3)

where S is the normalization scalar and is set as S = 4.0.
Therefore, for each effective anchor-point, its regression target
is a 4-dimensional vector with a value of dl, dt, dr and db. For

a negative sample we set its value to null. Finally, for each
anchor-point pli j, we have a corresponding classification target
cli j and positioning target dli j. In order to facilitate understand-
ing, we arrange the anchor-points on the same feature level into
a matrix format, as illustrated in Fig. 4.

3.4. Soft-Weighted Anchor-Points
We observed that the anchor-point farther away from the cen-

ter of the instance contains less semantic information but more
background information, resulting in many low-quality predic-
tion bounding boxes. In order to address this problem, we pro-
pose a simple and effective weighting strategy, adding different
weights wli j to each anchor-point pli j. Our weighting strategy is
to weight according to the distance between the current anchor-
point and the anchor-point corresponding to the center position
of the instance. For positive samples, the longer the distance,
the smaller the weight so we can make the generation of the
prediction box dependent more on the anchor-points near the
center of the instance. For negative samples, since it is not used
to generate prediction boxes, we keep their weights unchanged
at 1. The specific formula is shown in Eq. (4) as:

wli j =


√

min(dl
li j,d

r
li j)min(dt

li j,d
b
li j)

max(dl
li j,d

r
li j)max(dt

li j,d
b
li j)
, pli j ∈ p+

1, pli j ∈ p−
(4)

where dl
li j, dr

li j, dt
li j and db

li j represent the normalized distance
from pli j to the left, right, top and bottom boundaries of the
instance, respectively.

3.5. Soft-Selected Pyramid Levels
The anchor-based detector determines the feature level for

the instance according to the IoU of the instance and all prede-
fined boxes on each feature layer. For each instance, it only uses
a certain layer in the feature pyramid. Our model uses anchor-
free methods, so there is no such constraint and we can assign
the same instance to multiple feature levels to make fuller use
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Fig. 5. The overall process of the weight prediction for soft-selected pyra-
mid levels. For a more intuitive understanding, only three of the five layers
of the feature pyramid are shown. “S” indicates the stack operation. wB

l
represents the weight of l-th level in the feature pyramid corresponding to
instance B.

of the feature pyramid. FoveaBox [34] has demonstrated that
assigning the same instance to multiple feature levels can im-
prove the performance of the detector to a certain extent, and
feature layers of different levels should make different contri-
butions to the detection of the same instance. Therefore, we
propose a method to allocate instances to each feature level in
a certain proportion. This can also be understood as we allow
each level in the feature pyramid to detect the same instance,
but for the results of each level of detection, we have to apply
different weights to achieve the effect that different levels of
feature layers have made different contributions. We call this
weight ‘soft-selection weight’.

In order to obtain the optimal soft-selection weight, we pro-
pose a meta-selection network that can be trained with the entire
detection model, and use this network to generate soft-selection
weight. The detailed architecture of the meta-selection network
is shown in Table 1.

Table 1. Architecture of the meta-selection network.
Layer Type Output Size Layer Set Batch Normalization Activation

Input 1280 × 7 × 7 n/a N n/a
conv 256 × 5 × 5 3 × 3,256 Y ReLU
conv 256 × 3 × 3 3 × 3,256 Y ReLU
conv 256 × 1 × 1 3 × 3,256 Y ReLU

fc 5 n/a N Softmax

It consists of three 3× 3 conv layers and one fully-connected
layer. Each conv layer with no padding is followed by Batch-
Normalization and ReLU activation functions, and the activa-
tion function of fully-connected layer is softmax. We use cross
entropy loss to optimize it and for each instance its correspond-
ing ground-truth is a one-hot vector whose value is equal to
the level of the optimal feature pyramid corresponding to the
instance selected by the FSAF module.

Our overall process is shown in Fig. 5. First, we extract the
instance-dependent feature responses from all the pyramid lev-
els. Then we use RoIAlign [2] layer to resize the width and
height of the feature responses to 7 × 7 and stack them in the
dimension of the channel. Finally, the stacked features are in-
put into the meta-selection network to obtain a 5-dimensional

vector, which is the soft-selection weight. Thus, we associate
the instance B with the weight wB

l of each level in the feature
pyramid. On this basis, if the anchor-point pli j of the instance-
dependent feature responses is inside Be, then we can combine
the two weights to get the final weight of the anchor-point, as
shown in Eq. (5).

wli j =

w
B
l

√
min(dl

li j,d
r
li j)min(dt

li j,d
b
li j)

max(dl
li j,d

r
li j)max(dt

li j,d
b
li j)
, ∃B, pli j ∈ Be

1, otherwise
(5)

3.6. Loss Functions

For the classification subnet, we use focal loss (lFL) [28] for
training to overcome the imbalance between positive and nega-
tive anchor-points with hyperparameters α = 0.25 and γ = 2.0.
For the regression subnet, we use IoU loss (lIoU) for training,
and all negative anchor-points do not participate in the calcula-
tion of IoU loss [35]. For each anchor-point pli j, the output of
the classification subnet is a K-dimensional vector ĉli j, and the
output of the regression subnet is a 4-dimensional vector d̂li j,
and its loss (Lli j) calculation formula is shown in Eq. (6).

Lli j =

lFL(ĉli j, cli j) + lIoU(d̂li j, dli j), pli j ∈ p+

lFL(ĉli j, cli j), pli j ∈ p−
(6)

where cli j and dli j are the targets of classification and regression
respectively. So far, we have obtained the loss of each anchor-
point. We then multiply it with the corresponding weight wli j to
get its weighted loss. Finally, the total loss of the entire model
is the total weighted loss of anchor-points divided by the total
weight of all positive anchor-points plus the cross entropy loss
of the meta-selection network, as in Eq. (7).

L =
1∑

pli j∈p+ wli j

∑
l

∑
i j

wli jLli j + λLmeta−net (7)

where Lmeta−net is the cross entropy loss of the meta-selection
network. Since the model is used for object detection, Lmeta−net

cannot account for too much in the total loss, so λ is used to
control its ratio, we set λ = 0.1.

4. Experiments

We conduct experiments on the PASCAL VOC dataset [46,
47] and MS COCO dataset [48]. For the PASCAL VOC dateset,
the training data is PASCAL-VOC2007 trainval set and test set
plus PASCAL-VOC2012 trainval set, which contains approx-
imately 21.5k images. For the MS COCO dataset, the train-
ing data is train2017 set, which contains approximately 118k
images. All ablation experiments are performed on PASCAL-
VOC2007 val (containing 2.5k images), PASCAL-VOC2012
val (containing 5k images) and MS COCO val set (contain-
ing 5k images). When comparing with other state-of-the-art
detectors, we report our main research results on the PASCAL-
VOC2012 test and MS COCO test-dev.
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4.1. Inference Details

Anchor-free object detector is a single FCN [49] composed
of EfficientNet B0 backbone, BiFPNs, a classification subnet
and a regression subnet. Since the meta-selection network is
only used to train the detection head, it does not participate in
inference. As such, inference only involves forwarding the im-
age through the network in the form of full convolution. Then,
each anchor point pli j generates classification prediction cli j and
localization prediction dli j through the same classification sub-
net and regression subnet. The dli j is decoded by the reverse
Eq. (8) of Eq. (3) to obtain the bounding box.

x1 = Xli j − dl · S 2l + w/2

y1 = Yli j − dt · S 2l + h/2

x2 = Xli j + dr · S 2l − w/2

y2 = Yli j + db · S 2l − h/2

(8)

where (x1, y1) and (x2, y2) represent the coordinates of the upper
left corner and the lower right corner of the predicted bound-
ing box, respectively. Unless otherwise noted, we only decode
the dli j corresponding to at most 1k top-scoring anchor points
in each pyramid level to the prediction bounding boxes, after
thresholding detector confidence at 0.05. After that, the top
prediction bounding boxes from each pyramid level are merged
and non-maximum suppression is applied with a threshold of
0.5 to yield the final detections.

4.2. Training Details

The entire detection network and meta-selection network are
jointly trained using Adam optimizer. The training process is
divided into two steps in total. In the first step, we freeze the
backbone for 50 epoch rough training with the initial learning
rate being 10−3 and a batchsize of 32 images. In the second
step, we unfreeze the backbone and freeze all BN layers for
50 epoch precision training with the initial learning rate being
10−5 and a batchsize of four images. The remaining parameters
of the Adam optimizer are all default values, and each epoch is
performed 1K iterations for a total of 100k iterations. We ini-
tialize the backbone network with the weights provided by Ef-
ficientNet B0. The initialization of BiFPN is the same as [50].
Initializing all layers with a Gaussian weight and bias b = 0
in the meta-selection network and subnets (except for the final
layer), and for batch normalization the momentum and epsilon
are set as 0.99 and 0.001. The final conversion layer of the clas-
sification subnet is initialized with bias b = − log ((1 − π)/π),
where π = 0.01, and a Gaussian weight. The final conversion
layer of the regression subnet is initialized with a bias b = 0.1,
and also a Gaussian weight. All the Gaussian weights are filled
with σ = 0.01.

4.3. Ablation Studies

In all ablation studies, the input image scale used for training
and testing the model is 512 × 512 pixels. We evaluated the
contribution of BiFPN, soft-weighted anchor points and soft-
selected pyramid levels to our detector. But before that, we
have to determine the constant scale factor ε that controls the

Table 2. Varying ε for the size of effective boxes Be. Detector is FSAF with
EfficientNet-B0 backbone and BiFPN for all experiments in this table. Val
represents the validation dataset.

Val

mAP ε
0.1 0.2 0.3 0.4 0.5

VOC12-val 76.8 78.4 77.3 76.7 76.1

VOC07-val 77.5 79.2 78.0 77.2 76.5

COCO-val 36.6 37.6 36.8 36.3 35.8

Table 3. The impact of different multi-scale feature fusion strategies on
detection

validation feature fusion mAPdataset strategy

VOC12-val

No fusion 68.8
FPN 73.6

PANet 77.3
BiFPN 78.4

VOC07-val

No fusion 69.1
FPN 74.0

PANet 77.8
BiFPN 79.2

COCO-val

No fusion 32.2
FPN 35.5

PANet 36.8
BiFPN 37.6

size of the effective box Be. We first apply different ε to the
FSAF detector with EfficientNet-B0 backbone and BiFPN. The
results are reported in Table 2. Obviously, setting ε to 0.2 is the
best choice.

BiFPN can better fuse multi-scale features to build a bet-
ter feature pyramid. First, we use different multi-scale fea-
ture fusion networks to train our model. To individually verify
the importance of BiFPN, we did not apply soft-weighted an-
chor points and soft-selected pyramid levels methods, but used
FSAF’s Online Feature Selection [32] method to assign a fea-
ture level to each instance. Moreover, for the fairness of abla-
tion research, we designed each multi-scale feature fusion net-
work as a separate module like BiFPN and repeated it three
times to connect it behind the backbone network. The archi-
tecture of No fusion, FPN, PANet and BiFPN are shown in
Fig. 2(a), Fig. 2(b), Fig. 2(d) and Fig. 3, respectively.

The specific details of the ablation experiment are as follows:
starting from the FSAF detector with EfficientNet-B0 backbone
and No fusion, first we use top-down FPN instead of No fusion,
which improves the accuracy by 4.8 mAP on the VOC12-val.
Then, we replace FPN with PANet, which further improves the
accuracy by about 3.7 mAP. Finally, we use BiFPN to replace
PANet, which improves the accuracy by nearly 1.1mAP on the
basis of the previous one. It is worth noting that the details of
obtaining the input Pin

l of each multi-scale fusion network are
mentioned in Section 3.1, and No fusion directly uses the Pin

l as



8

Table 4. Ablative experiments for SW and SS on VOC07-val, VOC12-val
and COCO-val. SW represents the soft-weighted anchor points, SS repre-
sents the soft-selected pyramid levels and OFS represents Online Feature
Selection method of FSAF, respectively.

Validation OFS SW SS mAPDataset

VOC12-val

√
78.4

√ √
80.5

√
80.3

√ √
82.2

VOC07-val

√
79.2

√ √
81.3

√
80.9

√ √
83.1

COCO-val

√
37.6

√ √
39.8

√
39.1

√ √
42.5

the output. Results are reported in Table 3. These results show
that our proposed BiFPN can better fuse multi-scale features
compared to other feature fusion networks, thereby improving
the accuracy of the detection.

Soft-weighted anchor points and soft-selected pyramid
levels improve the detection performance. In order to study
whether the soft weighted anchor points can improve the per-
formance of the detection head, we apply it to train the FSAF
detector with EfficientNet-B0 backbone and BiFPN and the
method of assigning feature levels to each instance is still the
Online Feature Selection method of FSAF. Similarly, in order to
study whether the soft-selected pyramid levels can improve the
detection performance, we only use it to replace the Online Fea-
ture Selection method of FSAF to assign feature levels to each
instance without using soft-weighted anchor points. Finally, we
use both soft-weighted anchor points and soft-selected pyramid
levels to train the detector to study whether the combined ef-
fect of the two can improve the detection performance. Results
are reported in Table 4. It is evident that soft-weighted anchor
points and soft-selected pyramid levels methods can signifi-
cantly improve the detection performance. Taking the ablation
study on VOC12-val as an example, the experimental results of
using only either soft-weighted anchor points or soft-selected
pyramid levels have increased by 2.1 mAP and 1.9 mAP re-
spectively, and the combined effect of the two has increased by
3.8 mAP.

4.4. Comparison to State of the Arts

We evaluate our final detector on the PASCAL-VOC2012
test set and MS COCO test-dev set to compare with the state-
of-the-art detectors. For all experiments, we have to prepro-
cess the image. Specifically, the long side of the image is first
scaled to 512 pixels, and then the short side is scaled with the
same ratio and filled to 512 pixels with gray bars, where the
gray bars are RGB three channels with a value of 128. Finally,
divide the value of each pixel by 255 and subtract the mean
value [0.485, 0.456, 0.406] and divide by the standard deviation

[0.229, 0.224, 0.225] for normalization. Other training details
are the same as in Section 4.2.

4.4.1. PASCAL VOC 2012
Following the protocol of VOC 2012, we submit the detec-

tion results of our method to the public testing server for eval-
uation. We use VOC 2012 trainval set for training, and test on
VOC 2012 test set. Table 5 presents the comparison results.
Compared with the state of the art one-stage anchor-free meth-
ods, our method achieves 0.5 mAP higher than SAPD [53].
Compared with the latest one-stage anchor-base methods, our
method outperforms the best performing ASSD [52] by 0.4
mAP. Compared with the recent two-stage methods, our method
achieves a 1.6 mAP improvement above the top-performing
Cascade R-CNN. Finally, we show some detection results of
our method in Fig. 6.

4.4.2. MS COCO
In addition to PASCAL VOC, we also evaluate our method

on MS COCO. Following the protocol in MS COCO, we use
the trainval35k set for training and evaluate the results from
test-dev evaluation server. Except that a different backbone net-
work is used, the rest of the training details are the same as in
section 4.2. Table 6 shows the results on MS COCO test-dev
set. We report the results of four series of backbone models.
With ResNeXt-101-64x4d, our method outperforms the ATSS
with the same backbone ResNeXt-101-64x4d by 0.7% in AP.
With ResNet-101, our method also outperforms other two-stage
detectors such as TridentNet with the same backbone by 1.4%
in AP. With ResNeXt-101-64x4d-DCN as the backbone, our
method achieves 47.6% in AP. Moreover, if we use the Copy-
Paste [56] data augmentation method, our method can be fur-
ther improved to 49.3% in AP. We show some qualitative results
on the MS COCO test-dev in Fig.7.

Conclusion

This paper has proposed a model that combines the training
strategy of soft-weighted anchor points and soft-selected pyra-
mid levels with BiFPN, which not only builds a better feature
pyramid but also solves the problem of attention bias and fea-
ture selection in anchor-free object detection. As shown in the
experiment, our model is comparable to the anchor-based de-
tectors of the YOLO and SSD series, and it can also completely
avoid all calculations and hyperparameters related to the anchor
boxes.
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Table 5. Object detection results of our method with the EfficientNet-B0 backbone, BiFPN module, soft-weighted anchor points and soft-selected pyramid
levels strategies vs. state-of-the-art one-stage methods, i.e., RetinaNet, SSD, DSSD, FSSD [51], ASSD [52], YOLOv2, YOLOv3, YOLOv4, FSAF, CenterNet,
SAPD [53] and two-stage methods detectors, i.e., Faster R-CNN, OHEM [54], Cascade R-CNN, Soft-NMS [55] on PASCAL-VOC2012 test.

Method mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

Two-stage methods:
Faster R-CNN 74.4 84.4 77.7 83.9 60.4 49.4 84.6 70.0 94.7 58.7 73.8 57.0 93.2 84.9 76.7 80.1 46.3 77.6 69.0 86.6 78.3

OHEM 75.9 87.1 80.6 85.6 61.0 52.8 83.0 70.7 96.0 60.6 74.7 54.3 94.0 88.4 82.8 82.3 49.2 78.8 66.9 89.6 79.8

Cascade R-CNN 80.5 89.5 83.6 87.2 68.4 56.0 85.2 75.8 97.5 63.7 82.5 66.9 95.2 89.3 86.9 85.5 57.0 84.8 79.4 92.2 84.1

Soft-NMS 80.3 89.1 82.4 88.2 66.7 57.9 86.1 74.1 97.7 67.5 83.4 64.9 94.7 90.3 85.3 85.4 57.4 81.5 77.3 91.9 84.4

One-stage methods:
RetinaNet 75.0 85.7 77.4 85.2 62.2 52.5 84.3 70.3 95.7 59.8 73.9 54.9 93.2 84.1 80.4 82.0 48.9 76.8 65.7 87.7 78.7

SSD 78.9 88.5 83.9 87.4 64.1 56.1 86.4 74.1 95.6 73.8 82.7 61.9 95.2 88.9 85.3 83.7 53.0 81.8 73.5 91.3 80.9

DSSD 79.7 89.7 81.8 87.3 66.5 56.1 87.1 74.8 97.7 65.4 78.5 61.7 95.7 87.7 86.6 84.9 64.8 83.6 78.0 92.4 83.1

FSSD 80.8 89.7 84.7 88.3 69.8 57.5 86.5 74.4 97.1 67.7 84.9 65.4 93.1 90.2 86.7 85.1 57.1 82.8 78.7 92.2 83.9

ASSD 81.7 90.3 85.0 88.9 69.5 58.1 88.7 76.8 97.3 69.6 85.4 65.7 96.1 90.1 87.2 85.5 57.9 83.8 80.3 92.2 85.5

YOLOv2 77.3 86.5 83.0 86.2 63.0 54.6 85.9 71.2 96.0 62.1 78.3 57.9 93.8 87.7 83.1 82.7 50.4 80.9 73.5 89.2 80.7

YOLOv3 78.3 89.2 82.1 86.3 65.3 56.1 85.4 69.9 94.7 65.9 78.5 63.5 94.7 88.4 83.9 84.8 52.8 74.6 76.7 92.2 81.8

YOLOv4 80.7 90.0 83.0 88.1 67.7 59.2 86.0 74.7 97.5 67.8 84.0 65.1 95.7 89.0 85.8 85.6 56.9 82.9 78.8 92.2 83.3

FSAF 77.7 88.3 80.0 84.0 62.9 54.7 85.5 72.4 96.4 60.2 79.7 62.9 94.4 87.9 81.6 83.3 51.8 81.8 74.9 90.2 81.5

CenterNet 79.7 89.9 84.3 88.6 68.3 52.9 85.3 74.3 97.2 65.7 80.5 65.5 95.1 89.6 86.8 84.6 53.4 82.9 74.8 92.4 81.3

SAPD 81.6 89.7 86.1 89.1 70.3 58.8 87.1 75.8 97.4 68.9 84.5 67.8 95.5 90.6 87.3 86.4 56.6 84.0 78.8 93.4 84.4

Ours 82.1 90.5 85.8 88.3 71.2 59.4 88.3 76.7 98.0 69.2 84.2 66.7 96.3 89.5 88.3 86.7 58.2 85.1 82.4 92.5 84.6

Fig. 6. Some test results on PASCAL-VOC2012 test. As shown in the figure, our method is suitable for various objects, including crowded, occluded, highly
overlapping, extremely small and very large objects. And it has good performance for bottle and sheep, which are difficult to detect in the PASCAL-VOC
dataset.
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Table 6. Performance comparison with state-of-the-art one-stage methods and two-stage methods on MS COCO test-dev.
Method backbone AP AP50 AP75 APS APM APL

Two-stage methods:
Faster R-CNN w FPN [38] ResNet-101 36.2 59.1 39.0 18.2 39.0 48.2

Mask R-CNN [2] ResNet-101 38.2 60.3 41.7 20.1 41.1 50.2
Cascade R-CNN [26] ResNet-101 42.8 62.1 43.6 23.7 45.5 55.2

SNIPER [57] ResNet-101 46.1 67.0 51.6 29.6 48.9 58.1
RepPoints [58] ResNet-101 41.0 62.9 43.3 23.6 44.1 51.7
RepPoints [58] ResNet-101-DCN 45.0 66.1 49.0 26.6 48.6 57.5
TridentNet [59] ResNet-101 42.7 63.6 46.5 23.9 46.6 56.6
TridentNet [59] ResNet-101-DCN 46.8 67.6 51.5 28.0 51.2 60.5

One-stage methods:
RetinaNet [28] ResNet-101 39.1 59.1 42.3 21.8 42.7 50.2
CornerNet [30] Hourglass-104 40.6 56.4 43.2 19.1 42.8 54.3
CenterNet [37] Hourglass-104 42.1 61.1 45.9 24.1 45.5 52.8

FSAF [32] ResNet-101 40.9 61.5 44.0 24.0 44.2 51.3
FSAF [32] ResNeXt-101-64x4d 42.9 63.8 46.3 26.6 46.2 52.7

FoveaBox [34] ResNet-101 40.6 60.1 43.5 23.3 45.2 54.5
FoveaBox [34] ResNeXt-101-64x4d 42.1 61.9 45.2 24.9 46.8 55.6

FCOS [33] ResNet-101 41.5 60.7 45.0 24.4 44.8 51.6
FCOS [33] ResNeXt-101-64x4d 44.7 64.1 48.4 27.6 47.5 55.6

FreeAnchor [60] ResNet-101 43.1 62.2 46.4 24.5 46.1 54.8
FreeAnchor [60] ResNeXt-101-64x4d 44.9 64.3 48.5 26.8 48.3 55.9

SAPD [53] ResNet-101 43.5 63.6 46.5 24.9 46.8 54.6
SAPD [53] ResNeXt-101-64x4d 45.4 65.6 48.9 27.3 48.7 56.8
ATSS [61] ResNet-101 43.6 62.1 47.4 26.1 47.0 53.6
ATSS [61] ResNeXt-101-64x4d 45.6 64.6 49.7 28.5 48.9 55.6

Ours ResNet-101 44.1 63.6 47.8 25.6 47.5 55.2
Ours ResNet-101-DCN 46.7 66.4 50.1 27.4 49.6 59.8
Ours ResNeXt-101-64x4d 46.3 66.0 49.8 26.8 49.3 57.7
Ours ResNeXt-101-64x4d-DCN 47.6 67.9 51.2 29.5 50.6 60.3

Ours + Copy-Paste ResNeXt-101-64x4d-DCN 49.3 68.3 53.9 28.8 52.0 61.3

Fig. 7. Qualitative results of our method on the COCO test-dev set (corresponding to 44.1% mAP). ResNet-101 is used as the backbone network. The
training data is COCO trainval35k.
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