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In recommendation systems, the existence of the missing-not-at-random (MNAR) problem results in the selection bias issue, degrading
the recommendation performance ultimately. A common practice to address MNAR is to treat missing entries from the so-called
“exposure” perspective, i.e., modeling how an item is exposed (provided) to a user. Most of the existing approaches use heuristic models
or re-weighting strategy on observed ratings to mimic the missing-at-random setting. However, little research has been done to reveal
how the ratings are missing from a causal perspective. To bridge the gap, we propose an unbiased and robust method called DENC
(De-bias Network Confounding in Recommendation) inspired by confounder analysis in causal inference. In general, DENC provides
a causal analysis on MNAR from both the inherent factors (e.g., latent user or item factors) and auxiliary network’s perspective.
Particularly, the proposed exposure model in DENC can control the social network confounder meanwhile preserve the observed
exposure information. We also develop a deconfounding model through the balanced representation learning to retain the primary
user and item features, which enables DENC generalize well on the rating prediction. Extensive experiments on three datasets validate
that our proposed model outperforms the state-of-the-art baselines.

CCS Concepts: • Information systems; • Collaborative filtering; • Computer systems organization→ Robotics; • Networks
→ Network;

Additional Key Words and Phrases: Recommendation; Missing-Not-At-Random; Causal Inference; Bias; Propensity

ACM Reference Format:
Qian Li, Xiangmeng Wang, Zhichao Wang, and Guandong Xu. 2018. Be Causal: De-biasing Social Network Confounding in Recom-
mendation. In Woodstock ’18: ACM Symposium on Neural Gaze Detection, June 03–05, 2018, Woodstock, NY . ACM, New York, NY, USA,
23 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Recommender systems aim to handle information explosion meanwhile to meet users’ personalized interests, which have
received extensive attention from both research communities and industries [15, 18, 22]. The power of a recommender
system highly relies on whether the observed user feedback on items “correctly” reflects the users’ preference or not. The
feedback can be categorised into explicit feedback (e.g., users’ numerical ratings) or implicit feedback (e.g., purchases,
views and clicks). However, such implicit or explicit feedback suffers from the missing issue that needs to be resolved to
achieve high-quality recommendations [14, 45, 52]. To handle the partially observed feedback, a common assumption

∗Equal contribution.
†Corresponding author: guandong.xu@uts.edu.au

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
Manuscript submitted to ACM

1

HTTPS://ORCID.ORG/0000-0002-8308-9551
HTTPS://ORCID.ORG/0000-0003-3643-3353
HTTPS://ORCID.ORG/0000-0003-3643-3353
HTTPS://ORCID.ORG/0000-0003-4493-6663
https://doi.org/10.1145/1122445.1122456


53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

Woodstock ’18, June 03–05, 2018, Woodstock, NY Q. Li and X. Wang, et al.

for model building is that the feedback is missing at random (MAR), i.e., the probability of a rating to be missing is
independent of the value. When the observed data follows the MAR, using only the observed data via statistical analysis
methods can yield “correct” prediction without introducing bias [25, 31]. However, this MAR assumption usually does
not hold in reality and the missing pattern exhibits missing not at random (MNAR) phenomenon. Generally speaking,
prior study offers compelling evidence to show MNAR can be attributed to selection bias for explicit feedback [31] or
exposure bias for implicit feedback [4]. These findings shed light on the origination of bias from MNAR explicit [44]. In
our work, we focus on address the MNAR issue in explicit feedback to mitigate the selection bias. Particularly, selection
bias occurs because users are free to choose which items to rate, so that the observed ratings are not the representative
population of all ratings. That might because users are only exposed to a part of specific items so that unobserved
interactions do not always represent negative preference. How to model the missing data mechanism and debias the
rating performance forms up the main motivation of this research.
Existing MNAR-aware Methods

There are abundant methods for addressing the MNAR problem on the implicit or explicit feedback. For implicit
feedback, traditional methods [15] take the uniformity assumption that assigns a uniform weight to down-weight the
missing data, assuming that each missing entry is equally likely to be negative feedback. This is a strong assumption and
limits models’ flexibility for real applications. Recently, researchers tackle MNAR data directly through simulating the
generation of the missing pattern under different heuristics [14]. Of these works, probabilistic models are presented as a
proxy to relate missing feedback to various factors, e.g., item features. For explicit feedback, a widely adopted mechanism
is to exploit the dependencies between rating missingness and the potential ratings (e.g., 1-5 star ratings) [19]. That
is, high ratings are less likely to be missing compared to items with low ratings. However, these paradigm methods
involve heuristic alterations to the data, which are neither empirically verified nor theoretically proven [40].

A couple of methods have recently been studied for addressing MNAR [14, 23, 42] by treating missing entries
from the so-called “exposure” perspective, i.e., indicating whether or not an item is exposed (provided) to a user. For
example, ExpoMF resorts modeling the probability of exposure [14], and up-weighting the loss of rating prediction with
high exposure probability. However, ExpoMF can lead to a poor prediction accuracy for rare items when compared
with popular items. Likewise, recent works [23, 42] resort to propensity score to model exposure. The propensity score
introduced in causal inference indicates the probability that a subject receiving the treatment or action. Exposing a user
to an item in a recommendation system is analogous to exposing a subject to a treatment. Accordingly, they adopt
propensity score to model the exposure probability and re-weight the prediction error for each observed rating with the
inverse propensity score. The ultimate goal is to calibrate the MNAR feedbacks into missing-at-random ones that can be
used to guide unbiased rating prediction.

Whilst the state-of-the-art propensity-based methods are validated to alleviate the MNAR problem for recommen-
dation somehow, they still suffer from several major drawbacks: 1) they merely exploit the user/item latent vectors
from the ratings for mitigating MNAR, but fail to disentangle different causes for MNAR from a causal perspective; 2)
technically, they largely rely on propensity score estimation to mitigate MNAR problem; the performance is sensitive to
the choice of propensity estimator [52], which is notoriously difficult to tune.
The proposed approach

To overcome these obstacles, in contrast, we aim to address the fundamental MNAR issue in recommendation from a
novel causal inference perspective, to attain a robust and unbiased rating prediction model. From a causal perspective,
we argue that the selection bias (i.e., MNAR) in the recommendation system is attributed to the presence of confounders.
As explained in Figure 1, confounders are factors (or variables) that affect both the treatment assignments (exposure) and
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Confounder

Treatment Outcome

Social network

Exposure

Observed ratings

Fig. 1. The causal view for MNAR problem: treatment and outcome are terms in the theory of causal inference, which denote an action
taken (e.g.,exposure) and its result (e.g., rating), respectively. The confounder (e.g., social network) is the common cause of treatment
and outcome.

the outcomes (rating). For example, friendships (or social network) can influence both users’ choice of movie watching
and their further ratings. Users tend to consume and rate the items that they like and the items that have been consumed
by their friends. So, the social network is indeed a confounding factor that affects which movie the user is exposed to and

how the user rates the movie. The confounding factor results in a distribution discrepancy between the partially observed

ratings and the complete ratings as shown in Figure 2. Without considering the distribution discrepancy, the rating
model trained on the observed ratings fails to generalize well on the unobserved ratings. With this fact in mind, our
idea is to analyze the confounder effect of social networks on rating and exposure, and in turn, fundamentally alleviate
the MNAR problem to predict valid ratings.

...

Confounder

Exposure

Rating

Inference Space

Fig. 2. The training space of conventional recommendation models is the observed rating space O, whereas the inference space
is the entire exposure space D. The discrepancy of data distribution between O and D leads to selection bias in conventional
recommendation models.

In particular, we attempt to study the MNAR problem in recommendation from a causal view and propose an unbiased
and robust method called DENC (De-bias Network Confounding in Recommendation). To sufficiently consider the selection
bias in MNAR, we model the underlying factors (i.e., inherent user-item information and social network) that can
generate observed ratings. In light of this, as shown in Figure 4, we construct a causal graph based recommendation
framework by disentangling three determinants for the ratings, i.e., inherent factors, confounder and exposure. Each
determinant accordingly corresponds to one of three specific components in DENC: deconfonder model, social network
confounder and exposure model, all of which jointly determine the rating outcome.

In summary, the key contributions of this research are as follows:
3
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• Fundamentally different from previous works, DENC is the first method for the unbiased rating prediction
through disentangling determinants of selection bias from a causal view.

• The proposed exposure model is capable of revealing the exposure assignment and accounting for the confounder
factors derived from the social network confounder, which thus remedies selection bias in a principled manner.

• We develop a deconfonder model via the balanced representation learning that embeds inherent factors inde-
pendent of the exposure, therefore mitigating the distribution discrepancy between the observed rating and
inference space.

• We conduct extensive experiments to show that our DENC method outperforms state-of-the-art methods. The
generalization ability of our DENC is also validated by verifying different degrees of confounders.

2 RELATEDWORK

In this section, we discuss the relationship between missing mechanisms and bias, as well as some recommendation
methods to address this issue.

2.1 MNAR Assumption and Bias Issue

To analyze data with missing values, it is imperative to understand the missing mechanisms. Missing data mechanisms
are categorised into three categories: missing completely at random (MCAR), missing at random (MAR), and missing not
at random (MNAR) [39]. In the recommendation scenario, MCAR refers to the missingness that the probability of a rating
to be missing is completely random; the missingness is MAR if the probability of not observing a rating is independent
of the value of that rating but related to some of the observed data; and the mechanism is MNAR if it is neither MCAR
nor MAR. A critical assumption behind collaborative filtering (CF) is that the missing ratings are MAR [15, 18, 18, 19, 37],
i.e., the missingess of user’s feedback is independent of user’s preference [15]. Following this MAR assumption,
numerous approaches have been developed, including matrix factorization based-recommenders [18, 37], SVD++ [19]
and timeSVD [18]. However, this MAR assumption does not hold because real-world recommender systems are subject
to bias [27, 31], including but not limited to selection bias in explicit feedback [14, 27, 29, 31] and exposure bias in
implicit feedback [4, 14, 28, 57]. These biases make the observed feedback deviate from reflecting user true preference,
which are theoretically and empirically proved by several studies [42, 45, 56]. Hence, without considering the biases,
naively fitting feedback would lead to suboptimal prediction. In our work, we focus on the explicit user rating data and
achieve a high prediction accuracy using MNAR feedback.

2.2 MNAR-aware Methods

Given the wide existence of data biases, we investigate the related work of addressing the bias for the MNAR feedback,
including data imputation-based and propensity-based methods.

2.2.1 Data Imputation-based. Note that the main reason for the selection bias in the observed rating data is that users
are free to deliberately choose which items to rate. Early works adopt a direct manner for mitigating selection bias, which
jointly integrate rating prediction and missing data model (i.e. ’which items the user select to rate’) via sophisticated
approximate inference [14, 24, 26, 31, 46, 55]. The basic assumption behind these methods is that the probability of users’
selection on items depends on users’ rating values for that item. For example, Marlin and Zemel [31] model the missing

4



209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Be Causal: De-biasing Social Network Confounding in Recommendation Woodstock ’18, June 03–05, 2018, Woodstock, NY

probability of a user-item pair dependent on the user rating values through a mixture of Multinomials. Alternatively,
a probabilistic matrix factorization is proposed to characterize the missing probability of a user-item pair [26, 47] to
improve the flexibility of MM model. Hernandez et al. [14] use a new probabilistic matrix factorization model with
hierarchical priors for ordinal rating data, which increases robustness to the selection of hyper-parameters. Recently,
Ohsawa et al. [34] further extend probabilistic matrix factorization to a Gated PMF by considering the dependency
between why a user consumes an item and how that affects the rating value. Chen et al. [5] model user’s consumption
with social influence for better estimating user’s preference on items. In summary, the data-imputation based approach
often has a large bias due to imputation inaccuracy, which would be propagated into training a prediction model and
easily mislead the prediction [7, 22, 52].

2.2.2 Propensity-based. To remedy the selection bias in evaluation, another kind of methods considers a recommenda-
tion as an intervention analogous to treating a patient with a specific medicine [23, 42, 48, 53]. The propensity score for
a user-item pair is computed as the marginal probability of observing a rating value for the user-item pair, which can
offset the selection bias when training a recommendation model. Particularly, they directly re-weight the prediction
error for each observed rating with the inverse propensity score of observing that rating. For example, Schnabel et
al. [42] compute the propensity from user ratings or indirectly through user and item covariates, and propose an
empirical risk minimization approach to learning the unbiased estimators from biased rating data. Alternatively, Liang
et al. [23] capture the propensity score using user exposure (what the user sees). Then, the inverse propensity score is
leveraged to train a click model (what the user click on) via a Bayesian model to correct exposure bias. These works
re-weight the observational click data as though it came from an “experiment” where users are randomly shown items.
For MNAR implicit feedback, Saito et al. [41] construct an unbiased estimator for the loss function of interest using only
biased implicit feedback. However, most of these methods are sensitive to the choice of propensity score estimators and
can suffer from high variance of the propensities [8, 52, 54]. Accordingly, Wang et al. integrate the propensity score
estimation and the data imputation model in a theoretically sophisticated manner [52] such that the performance is
less affected by the mis-specification of the models. In general, although propensity-based methods outperform the
state-of-the-art traditional recommendation methods, they do not take social information into consideration.

3 PROBLEM FORMULATION

In this section, we first introduce the notations of causal inference so as to prepare readers with the basics. Following
this, we analyze the confounding bias of conventional recommender system from a causal view.

3.1 Notations of Causal Inference

Causal inference aims to estimate the counterfactual outcome that is the outcome if the unit had taken another
treatment or action [36, 38, 39]. However, estimating counterfactual outcome from the observable data is challenging
due to the presence of confounders [3, 4, 53]. To understand this issue, we present the some key definitions in causal
inference.

Definition 1 (Treatment). Treatment refers to the action or intervention that applies to a sample.

Definition 2 (Potential outcome). For each unit-treatment pair, the outcome of that treatment when applied on that

unit is the potential outcome.
5
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Since a unit can only take one treatment, only one potential outcome can be observed (i.e., factual outcome), and the
remaining unobserved potential outcomes are the counterfactual outcome.

Definition 3 (Confounder). Given a pair of treatment and outcome, we say a variable is a confounder iff it affects

both treatment and outcome.

Confounder is a common causes of the treatment and outcome, which leads to the confounding bias when we
estimate counterfactual outcome from observational data [38, 39]. Confounding bias in causal inference is equivalent to
a domain adaptation scenario where a model is trained on a “source” (observed) data distribution, but should perform
well on a “target” (counterfactual) one [1, 23]. Handing confounding bias is the essential part of causal inference [3, 36],
which makes estimating counterfactual outcome from observational data feasible.

3.2 A Causal Inference Perspective on Recommendation

Viewing recommendation from a causal inference perspective, we argue that exposing a user to an item in recom-
mendation is analogous to exposing a patient to a treatment in a medical study. In both tasks, we have only partial
observations of how much certain users (patients) prefer (benefit from) certain items (treatments). We are interested
in the counterfactual question “if user (patient) had exposed (adopted) to other items (treatments), how much would
the user (patient) prefer (benefits from)?”. Following this principle, we aim to answer such a counterfactual prediction
in recommendation. Prior to that, we first give the notations. We assume that 𝑌 ∈ R𝑚×𝑛 = [ ¤𝑦𝑢𝑖 ] is the user-item
rating matrix, in which ¤𝑦𝑢𝑖 is the rating given by user 𝑢 to item 𝑖 . In addition, for every user-item pair (𝑢, 𝑖), we have a
binary exposure 𝑎𝑢𝑖 ∈ {1, 0} indicates that the item 𝑖 is exposed to user 𝑢 or not. Let𝐺 denote user-user social graph
among users where 𝐺𝑘 𝑗 = 1 if 𝑢𝑘 has a relation to 𝑢 𝑗 and zero otherwise. Let 𝑁𝑠 (𝑢) be the set of users whom 𝑢 directly
connected with. Based on these notations, we give a formal problem definition as below.

Problem 1 (Causal View for Recommendation). Given the social network 𝐺 and partially observed ratings 𝑌 , for

every user-item pair (𝑢, 𝑖) with 𝑎𝑢𝑖 = 0, we aim to estimating the ratings had these items been exposed by all users.

Fig. 3. The causal graph in recommendation.

Inspired by causal inference theory [36, 38, 39], we resort to causal graph that provides potentials to answer this
question. As a directed acyclic graph, causal graph can describe the generation mechanism of recommendation results
and guide the design of recommendation methods. In our work, we investigate social network as a confounder that
is a common cause of item exposure 𝐴 and rating 𝑌 . In particular, we abstract a structural causal graph, as shown in
Figure 3, to explicitly analyze the causal relations in the conventional recommender system. The causal graph consists
of four variables: confounder 𝑍 , exposure 𝐴, inherent factor 𝐼 and rating 𝑌 . Every directed edge represents a causal
relation between two variables. The rationality of causal relations in Figure 3 can be explained as follows.
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• 𝑍 → 𝐴: the social network information of users affects users’ choice of movie. For example, a user’s social
network might affect the movies he is exposed to.

• 𝑍 → 𝑌 : a users’ social network can affect users’ preference on items. Similarly, the social network can affect
how much the user likes movies he watched.

• (𝑍,𝐴) → 𝑌 : observed ratings are generated as results of which items are exposed to user and the user’s preference

for each of those items.
• 𝐼 → 𝑌 : inherent factors 𝐼 affects the recommendation outcome 𝑌 . For example, 𝐼 refers to the inherent factors
that are acquired from demographic features of users and items. For example, user ID and item genre.

In recommendation scenario, the social network is a confounder variable affects both user’s exposure to items and
the user’s rating. Recall that our interest is to estimate counterfactual ratings of the unexposed user-item pair (i.e.,
𝑎𝑢,𝑖 = 0) in which if the user had been exposed to the item. According to causal inference [36], the confounder in
recommendation scenario leads to the selection bias.

Definition 4 (Selection Bias). The observed ratings in the user-item pair (i.e., 𝑎𝑢,𝑖 = 1) is not representative to the
unexposed user-item pair (i.e., 𝑎𝑢,𝑖 = 0) we are interested in.

Selection bias indicates the observed ratings are not representative samples of the whole population, since users
in different social networks have different selection preferences. Consequently, without handling the selection bias,
counterfactual rating model is trained to over-recommend the majority population and amplify the imbalance, thus
would work poorly in rating estimation. Thus, eliminating the impact of the confounder is the necessary to attain an
unbiased counterfactual rating prediction.

4 METHODOLOGY

To resolve the impact of the confounder, we propose a novel approach called DENC to disentangle determinants on
rating outcome guided by the causal graph in Figure 3. The overall framework of our DENC is shown in Figure 3
includes three components: social network confounder, exposure model and deconfonder model. In the following, we will
elaborate on each component and the debiasing process for rating prediction.

4.1 Exposure Model

To cope with the selection bias caused by users or the external social relations, we build on the causal inference theory
and propose an effective exposure model. Guided by the treatment assignment mechanism in causal inference, we
propose a novel exposure model that computes the probability of exposure variable specific to the user-item pair. This
model is beneficial to understand the generation of the Missing Not At Random (MNAR) patterns in ratings, which
thus remedies selection biases in a principled manner. For example, user goes to watch the movie because of his
friend’s strong recommendation. Thus, we propose to mitigate the selection bias by exploiting the network connectivity
information that indicating to which extent the exposure for a user will be affected by its neighbors.

4.1.1 Social Network Confounder. To control the selection bias arisen from the external social network, we propose a
confounder representation model that quantifies the common biased factors affecting both the exposure and rating.

We now discuss the method of choosing and learning exposure. Let𝐺 present the social relationships among users
𝑈 , where an edge denotes there is a friend relationship between users. We resort to node2vec [11] method and learn
network embedding from diverse connectivity provided by the social network. More details about node2vec method can

7
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Fig. 4. Our DENC method consists of Social network confounder, exposure model, deconfonder model and rating model.

be found in Section A.4 in the appendix. To mine the deep social structure from 𝐺 , for every source user 𝑢, node2vec
generates the network neighborhoods 𝑁𝑠 (𝑢) ⊂ 𝐺 of node 𝑢 through a sampling strategy to explore its neighborhoods
in a breadth-first sampling as well as a depth-first sampling manner. The representation 𝑍𝑢 for user 𝑢 can be learned by
minimizing the negative likelihood of preserving network neighborhoods 𝑁𝑠 (𝑢):

L𝑧 = −
∑
𝑢∈𝐺

log 𝑃 (𝑁𝑠 (𝑢) |𝑍𝑢 ) =
∑
𝑢∈𝐺

log
∑
𝑣∈𝐺

exp(𝑍𝑣 · 𝑍𝑢 ) −
∑

𝑢𝑖 ∈𝑁𝑠 (𝑢)
𝑍𝑢𝑖 · 𝑍𝑢

 (1)

The final output 𝑍𝑢 ∈ R𝑑 sufficiently explores diverse neighborhoods of each user, which thus represents to what
extent the exposure for a user is influenced by his friends in graph 𝐺 .

4.1.2 Exposure Assignment Learning. The exposure under the recommendation scenario is not randomly assigned.
Users in social networks often express their own preferences over the social network, which therefore will affect their
friends’ exposure policies. In this section, to characterize the Missing Not At Random (MNAR) pattern in ratings, we
resort to causal inference [36] to build the exposure mechanism influenced by social networks.

To begin with, we are interested in the binary exposure 𝑎𝑢𝑖 that defines whether the item 𝑖 is exposed (𝑎𝑢𝑖 = 1)
or unexposed (𝑎𝑢𝑖 = 1) to user 𝑢, i.e., 𝑎𝑢𝑖 = 1. Based on the informative confounder learned from social network, we
propose the notation of propensity to capture the exposure from the causal inference language.

Definition 5 (Propensity). Given an observed rating 𝑦𝑢𝑖 ∈ rating and confounder 𝑍𝑢 in (1), the propensity of the

corresponding exposure for user–item pair (𝑢, 𝑖) is defined as

𝜋 (𝑎𝑢𝑖 ;𝑍𝑢 ) = 𝑃 (𝑎𝑢𝑖 = 1|𝑦𝑢𝑖 ∈ rating;𝑍𝑢 ) (2)
8
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In view of the foregoing, we model the exposure mechanism by the probability of 𝑎𝑢𝑖 being assigned to 0 or 1.

𝑃 (𝑎𝑢𝑖 ) =
∏
𝑢,𝑖

𝑃 (𝑎𝑢𝑖 ) =
∏

(𝑢,𝑖) ∈O
𝑃 (𝑎𝑢𝑖 = 1)

∏
(𝑢,𝑖)∉O

𝑃 (𝑎𝑢𝑖 =?) (3)

where O is an index set for the observed ratings. The case of 𝑎𝑢𝑖 = 1 can result in an observed rating or unobserved
rating: 1) for the observed rating represented by 𝑦𝑢𝑖 ∈ rating, we definitely know the item 𝑖 is exposed, i.e., 𝑎𝑢𝑖 = 1; 2)
an unobserved rating 𝑦𝑢𝑖 ∉ rating may represent a negative feedback (i.e., the user is not reluctant to rating the item)
on the exposed item 𝑎𝑢𝑖 = 1. In light of this, based on (2), we have

𝑃 (𝑎𝑢𝑖 = 1) = 𝑃 (𝑎𝑢𝑖 = 1, 𝑦𝑢𝑖 ∈ rating) + 𝑃 (𝑎𝑢𝑖 = 1, 𝑦𝑢𝑖 ∉ rating)

= 𝜋 (𝑎𝑢𝑖 ;𝑍𝑢 )𝑃 (𝑦𝑢𝑖 ∈ rating) +𝑊𝑢𝑖𝑃 (𝑦𝑢𝑖 ∉ rating)
(4)

where𝑊𝑢𝑖 = 𝑃 (𝑎𝑢𝑖 = 1|𝑦𝑢𝑖 ∉ rating). The exposure 𝑎𝑢𝑖 that is unknown follows the distributions as

𝑃 (𝑎𝑢𝑖 =?) = 1 − 𝑃 (𝑎𝑢𝑖 = 1) (5)

By substituting Eq. (4) and Eq. (5) for Eq. (3), we attain the exposure assignment for the overall rating data as

𝑃 (𝑎𝑢𝑖 ) =
∏

(𝑢,𝑖) ∈O
𝜋 (𝑎𝑢𝑖 ;𝑍𝑢 )

∏
(𝑢,𝑖)∉O

(1 −𝑊𝑢𝑖 ) (6)

Inspired by [35], we assume uniform scheme for 𝑊𝑢𝑖 when no side information is available. According to most
causal inference methods [36, 43], a widely-adopted parameterization for 𝜋 (𝑎𝑢𝑖 ;𝑍𝑢 ) is a logistic regression network
parameterized by Θ = {𝑊0, 𝑏0}, i.e.,

𝜋 (𝑎𝑢𝑖 ;𝑍𝑢 ,Θ) = I𝑦∈rating ·
[
1 + 𝑒−(2𝑎𝑢𝑖−1) (𝑍

⊤
𝑢 ·𝑊0+𝑏0)

]−1
(7)

Based on Eq. (7), the overall exposure 𝑃 (𝑎𝑢𝑖 ) in Eq. (6) can be written as the function of parameters Θ = {𝑊0, 𝑏0} and
𝑍𝑢 , i.e.,

L𝑎 =
∑
𝑢,𝑖

− log 𝑃 (𝑎𝑢𝑖 ;𝑍𝑢 ,Θ) (8)

where social network confounder 𝑍𝑢 is learned by the pre-trained node2vec algorithm. Similar to supervised learning,
Θ can be optimized through minimization of the negative log-likelihood.

4.2 Deconfounder Model

Traditional recommendation learns the latent factor representations for user and item by minimizing errors on the
observed ratings, e.g., matrix factorization. Due to the existence of selection bias, such a learned representation may not
necessarily minimize the errors on the unobserved rating prediction. Inspired by [43], we propose to learn a balanced
representation that is independent of exposure assignment such that it represents inherent or invariant features in terms
of users and items. The invariant features must also lie in the inference space shown in Figure 2, which can be used to
consistently infer unknown ratings using observed ratings. This makes sense in theory: if the learned representation is
hard to distinguish across different exposure settings, it represents invariant features related to users and items.

According to Figure 3, we can define two latent vectors 𝑈 ∈ R𝑘𝑑 and 𝐼 ∈ R𝑘𝑑 to represent the inherent factor
of a user and a item, respectively. Recall that different values for 𝑊𝑢𝑖 in Eq. (6) can generate different exposure
assignments for the observed rating data. Following this intuition, we construct two different exposure assignments 𝑎
and 𝑎 corresponding two settings of𝑊𝑢𝑖 . Accordingly, Φ(𝑎) and Φ(𝑎) are defined to include inherent factors of users

9
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and items, i.e., Φ(𝑎) =

[
𝑈

(𝑎)
1 , · · · ,𝑈 (𝑎)

𝑀
, 𝐼

(𝑎)
1 , · · · , 𝐼 (𝑎)

𝑀

]
∈ R𝑘𝑑×2𝑀 , Φ(𝑎) =

[
𝑈

(𝑎)
1 , · · · ,𝑈 (𝑎)

𝑀
, 𝐼

(𝑎)
1 , · · · , 𝐼 (𝑎)

𝑀

]
∈ R𝑘𝑑×2𝑀 .

Figure 3 also indicates that the inherent factors of user and item would keep unchanged even if the exposure variable is
altered from 0 to 1, and vice versa. That means𝑈 ∈ R𝑘𝑑 and 𝐼 ∈ R𝑘𝑑 should be independent of the exposure assignment,
i.e., 𝑈 (𝑎)𝑈 (𝑎) or 𝐼 (𝑎) 𝐼 (𝑎) . Accordingly, minimizing the discrepancy between Φ(𝑎) and Φ(𝑎) ensures that the learned
factors embeds no information about the exposure variable and thus reduce selection bias. The penalty term for such a
discrepancy is defined as

L𝑑 = disc
(
Φ(𝑎) ,Φ(𝑎)

)
(9)

Inspired by [33], we employ Integral Probability Metric (IPM) to estimate the discrepancy between Φ(𝑎) and Φ(𝑎) .
IPMF (·, ·) is the (empirical) integral probability metric defined by the function family F . Define two probability
distributions P = 𝑃 (Φ(𝑎) ) and Q = 𝑃 (Φ(𝑎) ), the corresponding IPM is denoted as

IPMF (P,Q) = sup
𝑓 ∈F

����∫
𝑆

𝑓 𝑑P −
∫
𝑆

𝑓 𝑑Q

���� (10)

where F : 𝑆 → R is a class of real-valued bounded measurable functions. We adopt F as 1-Lipschitz functions that lead
IPM to the Wasserstein-1 distance, i.e.,

𝑊𝑎𝑠𝑠 (P,Q) = inf
𝑓 ∈F

∑
v∈col𝑖 (Φ(𝑎̂) )

∥ 𝑓 (v) − v∥P(v)𝑑v (11)

where v is the 𝑖-th column of Φ(𝑎) and the set of push-forward functions F =

{
𝑓 | 𝑓 : R𝑑 → R𝑑 s.t. Q(𝑓 (v)) = P(v)

}
can transform the representation distribution of the exposed Φ(𝑎) to that of the unexposed Φ(𝑎) . Thus, ∥ 𝑓 (v) − v∥ is a
pairwise distance matrix between the exposed and unexposed user-item pairs. Based on the discrepancy defined in (12),
we define 𝐶 (Φ) = ∥ 𝑓 (v) − v∥ and reformulate penalty term in (9) as

L𝑑 = inf
𝛾 ∈Π (P,Q)

E(v,𝑓 (v))∼𝛾𝐶 (Φ) (12)

We adopt the efficient approximation algorithm proposed by [43] to compute the gradient of (12) for training the
deconfounder model. In particular, a mini-batch with 𝑙 exposed and 𝑙 unexposed user-item pairs is sampled from Φ(𝑎)
and Φ(𝑎) , respectively. The element of distance matrix 𝐶 (Φ) is calculated as 𝐶𝑖 𝑗 = ∥col𝑖 (Φ(𝑎) ) − col𝑗 (Φ(𝑎) )∥. After
computing 𝐶 (Φ), we can approximate 𝑓 and the gradient against the model parameters 1. In conclusion, the learned
latent factors generated by the deconfounder model embed no information about exposure variable. That means all the
confounding factors are retained in social network confounder 𝑍𝑢 .

4.3 Learning

4.3.1 Rating prediction. Having obtained the final representations 𝑈 and 𝐼 by the deconfounder model, we use an
inner product of 𝑈⊤𝐼 as the inherent factors to estimate the rating. As shown in the causal structure in Figure 4,
another component affecting the rating prediction is the social network confounder. A simple way to incorporate these
components into recommender systems is through a linear model as follows.

𝑦𝑢𝑖 =
∑
𝑢,𝑖∈O

𝑈⊤𝐼 +𝑊𝑢⊤𝑍𝑢 + 𝜖𝑢𝑖 , 𝜖𝑢𝑖 ∼ N(0, 1) (13)

1For a more detailed calculation, refer to Algorithm 2 in the appendix of prior work [43]

10
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where𝑊𝑢 is a coefficient that describes how much the confounder 𝑍𝑢 contributes to the rating. To define the unbiased
loss function for the biased observations 𝑦𝑢𝑖 , we leverage the IPS strategy [42] to weight each observation with
Propensity. By Definition 5, the intuition of the inverse propensity is to down-weight the commonly observed ratings
while up-weighting the rare ones.

L𝑦 =
1
|O|

∑
𝑢,𝑖∈O

(𝑦𝑢𝑖 − 𝑦𝑢𝑖 )2

𝜋 (𝑎𝑢𝑖 ;𝑍𝑢 )
(14)

4.3.2 Optimization. To this end, the objective function of our DENC method to predict ratings could be derived as:

L = L𝑦 + 𝜆𝑎L𝑎 + 𝜆𝑧L𝑧 + 𝜆𝑑L𝑑 + R(Ω) (15)

where Ω represents the trainable parameters and R(·) is a squared 𝑙2 norm regularization term on Ω to alleviate
the overfitting problem. 𝜆𝑎 , 𝜆𝑧 and 𝜆𝑑 are trade-off hyper-parameters. To optimize the objective function, we adopt
Stochastic Gradient Descent(SGD) [2] as the optimizer due to its efficiency.

5 EXPERIMENTS

To more thoroughly understand the nature of MNAR issue and the proposed unbiased DENC, experiments are conducted
to answer the following research questions:

• (RQ1) How confounder bias caused by the social network is manifested in real-world recommendation datasets?
• (RQ2) Does our DENC method achieve the state-of-the-art performance in debiasing recommendation task?
• (RQ3) How does the embedding size of each component (e.g., social network confounder and deconfounder
model) in our DENC method impact the debiasing performance?

• (RQ4) How do the missing social relations impact the debiasing performance of our DENC method?

5.1 Setup

5.1.1 Evaluation Metrics. We adopt two popular metrics including Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE) to evaluate the performance. Since improvements in MAE or RMSE have a significant impact on the
quality of the Top-𝐾 recommendations [17], we also evaluate our DENC with Precision@K and Recall@K for the
ranking performance2.

5.1.2 Datasets. We conduct experiments on three datasets including one semi-synthetic dataset and two benchmark
datasets Epinions 3 and Ciao [49] 4. We maintain all the user-item interaction records in the original datasets instead
of discarding items that have sparse interactions with users.5 The semi-synthetic dataset is generated by incorporating
the social network into MovieLens6 dataset. The details of these datasets are given in Section A.1 in the appendix.

5.1.3 Baselines. We compare our DENC against three groups of methods for rating prediction: (1) Traditional meth-
ods, including NRT [20] and PMF [32]. (2) Social network-based methods, including GraphRec [9], DeepFM+ [12],
SocialMF [16], SREE [21] and SoReg [30]. (3) Propensity-based methods, including CausE [1] and D-WMF [53]. More
implementation details of baselines and parameter settings are included in Section A.2 in the appendix.

2We consider items with a rating greater than or equal to 3.5 as relevant
3http://www.cse.msu.edu/ tangjili/trust.html
4http://www.cse.msu.edu/ tangjili/trust.html
5Models can benefit from the preprocessed datasets in which all items interact with at least a certain amount of users, for such preprocessing will reduce
the dataset sparsity.
6https://grouplens.org/datasets/movielens
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Table 1. Statistics of Datasets. Density for rating (density-R) is #𝑟𝑎𝑡𝑖𝑛𝑔𝑠/(#𝑢𝑠𝑒𝑟𝑠 · #𝑖𝑡𝑒𝑚𝑠) , Density for social relations (density-SR)
is #𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠/(#𝑢𝑠𝑒𝑟𝑠 · #𝑢𝑠𝑒𝑟𝑠) .

Epinions Ciao MovieLens-1M

# users 22,164 7,317 6,040
# items 296,277 104,975 3,706
# ratings 922,267 283,319 1000,209

density-R (%) 0.0140 0.0368 4.4683
# relations 355,754 111,781 9,606

density-SR (%) 0.0724 0.2087 0.0263

Table 2. Performance comparison: bold numbers are the best results. Strongest baselines are highlighted with underlines.

Traditional Social network-based Propensity-based Ours

Dataset Metrics PMF NRT SocialMF SoReg SREE GraphRec DeepFM+ CausE D-WMF DENC improv. 𝑝-value
Epinions MAE 0.9505 0.9294 0.8722 0.8851 0.8193 0.7309 0.5782 0.5321 0.3710 0.2684 38.2% 5.73e-5

RMSE 1.2169 1.1934 1.1655 1.1775 1.1247 0.9394 0.6728 0.7352 0.6299 0.5826 8.1% 3.96e-3
Ciao MAE 0.8868 0.8444 0.7614 0.7784 0.7286 0.6972 0.3641 0.4209 0.2808 0.2487 12.9% 3.62e-4

RMSE 1.1501 1.1495 1.0151 1.0167 0.9690 0.9021 0.5886 0.8850 0.5822 0.5592 4.1% 7.32e-5
MovieLens-1M MAE 0.8551 0.8959 0.8674 0.9255 0.8408 0.7727 0.5786 0.4683 0.3751 0.2972 26.2% 3.31e-5
Δ(𝑍𝑢 ) = −0.35 RMSE 1.0894 1.1603 1.1161 1.1916 1.0748 0.9582 0.6730 0.8920 0.6387 0.5263 21.4% 6.11e-4
MovieLens-1M MAE 0.8086 0.8801 0.8182 0.8599 0.7737 0.7539 0.5281 0.4221 0.3562 0.2883 23.4% 8.21e-6
Δ(𝑍𝑢 ) = 0 RMSE 1.0034 1.1518 1.0382 1.1005 0.9772 0.9454 0.6477 0.8333 0.6152 0.5560 10.6% 1.75e-5

MovieLens-1M MAE 0.7789 0.7771 0.7969 0.8428 0.7657 0.7423 0.3672 0.4042 0.3151 0.2836 11.1% 3.61e-3
Δ(𝑍𝑢 ) = 0.35 RMSE 0.9854 0.9779 1.0115 1.0792 0.9746 0.9344 0.5854 0.8173 0.5962 0.5342 9.6% 4.38e-4

5.1.4 Parameter Settings. We implement all baseline models on a Linux server with Tesla P100 PCI-E 16GB GPU. 7

Datasets for all models except CausE 8 are split as training/test sets with a proportion of 80/20, and 20% of the training
set are validation set.

We optimize all models with Stochastic Gradient Descent(SGD) [2]. For fair comparisons, a grid search is conducted
to choose the optimal parameter settings, e.g., dimension of user/item latent vector 𝑘𝑀𝐹 for matrix factorization-based
models and dimension of embedding vector𝑑 for neural network-basedmodels. The embedding size is initialized with the
Xavier [10] and searched in [8, 16, 32, 64, 128, 256]. The batch size and learning rate are searched in [32, 64, 128, 512, 1024]
and [0.0005, 0.001, 0.005, 0.01, 0.05, 0.1], respectively. The maximum epoch 𝑁𝑒𝑝𝑜𝑐ℎ is set as 2000, an early stopping
strategy is performed. Moreover, we employ three hidden layers for the neural components of NRT, GraphRec and
DeepFM+. Like our DENC method, DeepFM+ uses node2vec to train the social network embeddings. Hence, the
embedding size of its node2vec is set as the same as in our DENC for a fair comparison.

Without specification, unique hyperparameters of DENC are set as: three coefficients 𝜆𝑎 , 𝜆𝑧 and 𝜆𝑑 are tuned in
[0.2, 0.4, 0.6, 0.8, 1]. The dimension of node2vec embedding size 𝑘𝑎 and the dimension of inherent factor 𝑘𝑑 are tuned in
[8, 16, 32, 64, 128, 256], and their influences are reported in Section 5.4.

7Our code is currently shared on Github, we leave the link void now but promise to activate it after paper acceptance.
8As in CausE, we sample 10% of the training set to build an additional debiased dataset (mandatory in model training), where items are sampled to be
uniformly exposed to users.
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5.2 Understanding Social Confounder (RQ1)

We initially conduct an experiment to understand to what extent the confounding bias caused by social networks
is manifested in real-world recommendation datasets. We claim that the social network as a confounder bias the
interactions between the user and items. We aim to verify two kinds of scenarios: (1) User in the social network interacts
with more items than users outside the social network. (2) The pair of user-neighbor in the social network has more
common interacted items than the pair of user-neighbor outside the social network. Intuitively, an unbiased platform
should expect users to interact with items broadly, which indicates that interactions are likely to be evenly distributed.
Thus, we investigate the social confounder bias by analyzing the statistics of interactions in these two scenarios in
Epinions and Ciao dataset.

(a) Distribution on Ciao. (b) Distribution on Epinions.

Fig. 5. Scenario (1): the distribution of 𝑥 (the number of items interacted by a user). The smooth probability curves visualize how the
number of items is distributed.

(a) Distribution on Ciao. (b) Distribution on Epinions.

Fig. 6. Scenario (2): the distribution of 𝑥 (the number of items commonly interacted by a user-pair).

For the first scenario, we construct two user sets within or outside the social network, i.e.,U𝐺 andU\𝐺 . Specially,
U𝐺 is constructed by randomly sampling a set of users in social network 𝐺 , andU\𝐺 is randomly sampled out of 𝐺 .
The size of U𝐺 andU\𝐺 is the same and defined as 𝑛. Following the above guidelines, we sample 𝑛 = 7, 000 users for
U𝐺 andU\𝐺 . Figure 5 depicts the distributions of the interacted items by users inU𝐺 andU\𝐺 . The smooth curves are
continuous distribution estimates produced by the kernel density estimation. Apparently, the distribution forU\𝐺 is
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significantly skewed: most of the users interact with few items. For example, on Ciao, more than 90% of users interact
with fewer than 40 items. By contrast, most users in the social network tend to interact with items more frequently. In
general, the distribution curve of U𝐺 is quite different from U\𝐺 , which reflects that the social network influences the
interactions between users and items. In addition, the degree of bias varies across different datasets: Epinions is less
biased than Ciao.

For the second scenario, based onU𝐺 andU\𝐺 , we further analyze the number of commonly interacted items by
the user-pair. Particularly, we randomly sample four one-hop neighbours for each user inU𝐺 to construct user-pairs.
Since users in U\𝐺 have no neighbours, for each of them, we randomly select another four users9 in U\𝐺 to construct
four user-pairs. Recall that U𝐺 and U\𝐺 both have 7,000 users, then we totally have 4 × 7, 000 user-pairs for U\𝐺 and
U\𝐺 , respectively. Figure 6 represents the distribution of how many items are commonly interacted by the users in
each pair.10 Figure 6 indicates most user-neighbour pairs in the social network have fewer than 20 items in common.
However the user-pairs outside the social network nearly have no items in common, i.e., less than 1. We can conclude
that social networks can encourage users to share more items with their neighbours, compared with users who are not
connected by any social networks.

5.3 Performance Comparison (RQ2)

We compare the rating prediction of DENC with nine recommendation baselines on three datasets including Epinions,
Ciao and MovieLens-1M. Table 2 demonstrates the performance comparison, where the confounderΔ(𝑍𝑢 ) in MovieLens-1M
is assigned with three different settings, i.e., -0.35, 0 and 0.35. The improvements and statistical significance test are
performed between DENC and the strongest baselines (highlighted with underline). Analyzing Table 2, we have the
following observations.

• Overall, our DENC consistently yields the best performance among all methods on five datasets. For instance,
DENC improves over the best baseline model w.r.t. MAE/RMSE by 38.2%/8.1%, 12.9%/4.1%, and 26.2%/21.4% on
Epinions, Ciao and MovieLens-1M (Δ(𝑍𝑢 )=-0.35) datasets, respectively. We can conclude that the improvements
of our DENC are statistically significant with all 𝑝 < 0.01. These results indicate the effectiveness of DENC on
the task of rating prediction, which has adopted a principled causal inference way to leverage both the inherent
factors and auxiliary social network information for improving recommendation performance.

• Among the three kinds of baselines, propensity-based methods serves as the strongest baselines in most cases.
This justifies the effectiveness of exploring the missing pattern in rating data by estimating the propensity score,
which offers better guidelines to identify the unobserved confounder effect from ratings. However, propensity-
based methods perform worse than our DENC, as they ignore the social network information. It is reasonable
that exploiting the social network is useful to alleviate the confounder bias to rating outcome. The importance of
social networks can be further verified by the fact that most of the social network-based methods consistently
outperform PMF on all datasets.

• All baseline methods perform better on Ciao than on Epinions, because Epinions is significantly sparser than
Ciao with 0.0140% and 0.0368% density of ratings. Besides this, DENC still achieves satisfying performance on
Epinions and its performance is competitive with the counterparts on Ciao. This demonstrates that its exposure
model of DENC has an outstanding capability of identifying the missing pattern in rating prediction, in which

9According to the statistics, we discover that 90% of users have at least four one-hop neighbours in Ciao and Epinions
10For example, {𝑢𝑠𝑒𝑟1,𝑢𝑠𝑒𝑟2,𝑢𝑠𝑒𝑟3,𝑢𝑠𝑒𝑟4} are one-hop neighbours of 𝑢𝑠𝑒𝑟5. If the number of commonly items interacted by 𝑢𝑠𝑒𝑟1 and 𝑢𝑠𝑒𝑟5 is 3,
then 𝑥 = 3 in the 𝑥-axis of Figure 6 is nonzero.
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biased user-item pairs in Epinions can be captured and then alleviated. In addition, the performance of DENC
on three Movielens-1M datasets is stable w.r.t. different levels of confounder bias, which verifies the robust
debiasing capability of DENC.

5.4 Ablation Study (RQ3)

In this section, we conduct experiments to evaluate the parameter sensitivity of our DENC method. We have five
important hyperparameters: 𝑘𝑎 and 𝑘𝑑 that correspond to the embedding size in loss function L𝑎 and L𝑑 , respectively;
𝜆𝑎 , 𝜆𝑧 and 𝜆𝑑 that correspond to the trade-off parameters for L𝑎 , L𝑧 and L𝑑 , respectively. Based on the hyperparameter
setup in Section 5.1.4, we vary the value of one hyperparameter while keeping the others unchanged.

MAE

��

��

(a) MAE on Ciao.

RMSE

��

��

(b) RMSE on Ciao.

MAE

��

��

(a) MAE on Epinions.

RMSE

��

��

(b) RMSE on Epinions.

Fig. 7. Our DENC: Parameter sensitivity of 𝑘𝑎 and 𝑘𝑑 against (a) MAE (b) RMSE on Ciao and Epinions dataset.

Figure 7 lays out the performance of DENC with different embedding sizes. For both datasets, the performance of our
DENC is stable under different hyperparameters 𝑘𝑎 and 𝑘𝑑 . The performance of DENC increases while the embedding
size increase from approximately 0-15 for 𝑘𝑑 ; afterwards, its performance decreases. It is clear that when the embedding
size is set to approximately 𝑘𝑎=45 and 𝑘𝑑=15, our DENC method achieves the optimal performance. Our DENC is less
sensitive to the change of 𝑘𝑎 than 𝑘𝑑 , since MAE/RMSE values change with a obvious concave curve along 𝑘𝑑=0 to 50
in Figure 7, while MAE/RMSE values only change gently with a downward trend along 𝑘𝑎=0 to 50. It is reasonable
since 𝑘𝑑 controls the embedding size of disentangled user-item representation attained by the deconfounder model, i.e.,
the inherent factors, while social network embedding size 𝑘𝑎 serves as the controller for auxiliary social information,
the former can influence the essential user-item interaction while the latter affects the auxiliary information.
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MAE

(a) MAE on 𝜆𝑎 and 𝜆𝑧 .
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(c) Performance on 𝜆𝑑 .

Fig. 8. Our DENC’s sensitivity to 𝜆𝑎 , 𝜆𝑧 and 𝜆𝑑 on Epinions dataset.

5.5 Sensitivity to Trade-off Parameter

As defined in objective function (15), the three most important trade-off parameters 𝜆𝑎 , 𝜆𝑧 and 𝜆𝑑 balance the contribu-
tions of exposure model loss, confounder loss and discrepancy loss, respectively. We evaluate our DENC’s sensitivity to
these three parameters on Epinions dataset. As shown in Figure 8, the values of trade-off parameters are chosen from
[0, 0.2, 0.4, 0.6, 0.8, 1]. Figure 8 (a) and (b) present the performance of our model in terms of MAE and RMSE, which
are generated by fixing the discrepancy loss weight 𝜆𝑑 and varying the trade-off between the other two parameters.
Apparently, our performance is significantly improved compared with the model without 𝜆𝑎 and 𝜆𝑧 , i.e., the errors are
reduced. Also, the overall performance on different combinations of hyperparameters of 𝜆𝑎 and 𝜆𝑧 is stable over a large
parameter range, which confirms the effectiveness and robustness of debiasing in DENC approach. This conclusion is
consistent with our model evaluation results.

Figure 8 (c) indicates that adding the discrepancy loss to account for the selection bias can improve the performance
in terms of MAE and RMSE compared with only having the estimation of confounder and exposure assignment. This is
the main reason why our method performs well when debiasing rating, but propensity-based method with logistic
regression predicting the exposure assignment cannot accurately estimate rating.

Fig. 9. Our DENC’s loss convergence curves on Epinions and Ciao datasets.
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5.6 Convergence Analysis

In Figure 9, we plot the convergence of objective loss (15) on the training set of Epinions and Ciao. One can see that
the overall loss decreases as the epoch increases on both datasets. Note that the rates of convergences are different in
different dataset. For example, the red curve starts to decrease significantly at epoch 10 and converges at epoch 40.
While the green curve first converges a bit more slowly and then become stable at around epoch 40.

5.7 Case Study (RQ4)

We first investigate how the missing social relations affect the performance of DENC. We randomly mask a percentage
of social relations to simulate the missing connections in social networks. For Epinions, Ciao and MovieLens dataset,
we fix the social network confounder as Δ(𝑍𝑢 ) = 0. Meanwhile, we exploit different percentages of missing social
relations including {20%, 50%, 80%}. Note that we do not consider the missing percentage of 100%, i.e., the social
network information is completely unobserved. Considering that the social network is viewed as a proxy variable of
the confounder, the social network should provide partially known information. Following this guideline, we firstly
investigate how the debias capability of our DENC method varies under the different missing percentages. Secondly, we
also report the ranking performance of DENC (percentages of missing social relations is set to 0%) under Precision@K
and Recall@K with 𝐾 = {10, 15, 20, 25, 30, 35, 40} to evaluate our model thoroughly.

M
A

E

Masking percentage
(a) MAE of DENC.

R
M

SE

Masking percentage
(b) RMSE of DENC.

Pr
ec

is
io

n@
20

Masking percentage
(c) Precision@20 of DENC.

R
ec

al
l@

20

Masking percentage
(d) Recall@20 of DENC.

Fig. 10. Our DENC: debias performance w.r.t. different missing percentages of social relation.

Figure 10 illustrates our debias performance w.r.t. different missing percentages of social relations on three datasets.
As shown in Figure 10, the missing social relations can obviously degrade the debias performance of DENC method.

17



885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

Woodstock ’18, June 03–05, 2018, Woodstock, NY Q. Li and X. Wang, et al.

The performance evaluated by four metrics in Figure 10 consistently degrades when the missing percentage increases
from 0% to 80%, which is consistent with the common observation. This indicates that the underlying social network
can play a significant role in a recommendation, because it can capture the preference correlations between users and
their neighbours.

(a) Epinions. (b) Ciao. (c) MovieLens-1M
(Δ(𝑍𝑢 ) = 0).

Fig. 11. Performance of DENC in terms of Precision@K and RecallG@K under difference 𝐾

Based on the evaluation on Precision@K and Recall@K, Figure 11 shows that DENC achieves stable performance on
Top-𝐾 recommendation when 𝐾 (i.e., the length of ranking list) varies from 10 to 40. Our DENC can recommend more
relevant items within top 𝐾 positions when the ranking list length increases.

6 CONCLUSION AND FUTUREWORK

In this paper, we have researched the missing-not-at-random problem in the recommendation and addressed the
confounding bias from a causal perspective. Instead of merely relying on inherent information to account for selection
bias, we developed a novel social network embedding based de-bias recommender for unbiased rating, through correcting
the confounder effect arising from social networks. We evaluate our DENC method on two real-world and one semi-
synthetic recommendation datasets, with extensive experiments demonstrating the superiority of DENC in comparison
to state-of-the-arts. In future work, we will explore the effect of different exposure policies on the recommendation
system using the intervention analysis in causal inference. In addition, another promising further work is to explore
the selection bias arisen from other confounder factors, e.g., user demographic features. This can be explained that a
user’s nationality affects which restaurant he is more likely to visit (i.e., exposure) and meanwhile affects how he will
rate the restaurant (i.e., outcome).
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A APPENDIX

A.1 Datasets

The statistics of baseline datasets are given in Table 1. In Epinions and Ciao, the rating values are integers from 1 (like
least) to 5 (like most). Since observed ratings are very sparse (rating density 0.0140% for Epinions and 0.0368% for
Ciao), thus the rating prediction on these two datasets is challenging.

In addition, we also simulate a semi-synthetic dataset based on MovieLens. It is well-known that MovieLens is a
benchmark dataset of user-movie ratings without social network information. For MovieLens-1M, we first need to
construct a social network 𝐺 by placing an edge between each pair of users independently with a probability 0.5
depending on whether the nodes belong to 𝐺 . Recall that the social network is viewed as the confounder (common
cause) which affects both exposure variables and ratings. We generate the exposure assignment by the confounder 𝑍𝑢
of three levels Δ(𝑍𝑢 ) ∈ {−0.35, 0, 0.35}. Then, the exposure 𝑎𝑢𝑖 and rating outcome 𝑦𝑢𝑖 are simulated as follows.

𝑎𝑢𝑖 ∼ Bern (Δ (𝑍𝑢 ))

𝑦𝑢𝑖 = 𝑎𝑢𝑖 · (𝑦mov
𝑢𝑖 + 𝛽𝑢Δ (𝑍𝑢 ) + 𝜀) 𝜀 ∼ 𝑁 (0, 1), 𝑢 ∈ 𝐺

𝑦𝑢𝑖 = 𝑦
mov
𝑢𝑖 𝑢 ∉ 𝐺

where 𝑦mov
𝑢𝑖

is the original rating in MovieLens and the parameter 𝛽𝑢 controls the amount of social network confounder.
The exposure 𝑎𝑢𝑖 indicating whether item 𝑖 being exposed to user 𝑢 is given by a Bernoulli distribution parameterized
by the confounder 𝑍𝑢 . The non-zero 𝑎𝑢𝑖 is used to simulate the semi-synthetic rating 𝑦𝑢𝑖 by the second equation. The
third equation indicates that the ratings of user will keep unchanged if s/he is not connected by 𝐺 .

A.2 Baselines

We compare our DENC against three groups of methods, covering matrix factorization method, social network-based
method, and propensity-based method. For each group, we select its representative baselines with details as follows.

• PMF [32]: The method utilizes user-item rating matrix and models latent factors of users and items by Gaussian
distributions;

• NRT [20]: A deep-learning method that adopts multi-layer perceptron network to model user-item interactions
for rating predictions.

• SocialMF [16]: It considers the social information by adding the propagation of social relation into the matrix
factorization model.

• SoReg [30]: It models social information as regularization terms to constrain the Matrix Factorization framework.
• SREE [21]: It models users and items embeddings into a Euclidean space as well as users’ social relations.
• GraphRec [9]: This is a state-of-the-art social recommender that models social information with Graph Neural
Network, it organizes user behaviors as a user-item interaction graph.

• DeepFM [12]+: DeepFM is a state-of-the-art recommender that integrates Deep Neural Networks and Factoriza-
tion Machine (FM). To incorporate the social information into DeepFM, we change the output of FM in DeepFM+
to the linear combination of the original FM function in [12] and the pre-trained node2vec user embeddings. We
also change the task of DeepMF from click-through rate (CTR) to rating prediction.

• CausE [1]: It firstly fits exposure variable embedding with Poisson factorization, then integrates the embedding
into PMF for rating prediction.
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Table 3. Experimental results of DENC-𝛼 and DENC-𝛽 .

Dataset Models MAE RMSE
Epinions DENC-𝛼 0.4725 0.8234

DENC-𝛽 0.4294 0.7876
DENC 0.2684 0.5826

Ciao DENC-𝛼 0.4380 0.8026
DENC-𝛽 0.3870 0.6723
DENC 0.2487 0.5592

• D-WMF [53]: A propensity-based model which uses Poisson Factorization to infer latent confounders then
augments Weighted Matrix Factorization to correct for potential confounding bias.

A.3 Model Variants Configuration

To get a better understanding of our DENC method, we further evaluate the key components of DENC including
Exposure model and Social network confounder. We evaluate the performance of DENC on the condition that if a specific
component is removed, and then compare the performance of the intact DENC method. In the following, we define two
variants of DENC as (1) DENC-𝛼 that removes Exposure model; (2) DENC-𝛽 that removes Social network confounder. Note
that we do not consider the evaluation of removing Deconfounder in DENC, since Deconfounder models the inherent
factors of user-item information, removing user-item information in a recommender can result in poor performance.
We record evaluation results in Table 3 and have the following findings:

• By comparing DENC with DENC-𝛼 , we find that Exposure model is important for capturing missing patterns and
thus boosting the recommendation performance. Removing Exposure model can lead a drastic degradation of
MAE/RMSE by 20.41%/24.08% on Epinions and 18.93%/24.34% on Ciao, respectively.

• We observe that without Social network confounder, the performance of DENC-𝛽 is deteriorated significantly,
with the degradation of MAE/RMSE by 16.10%/20.50% on Epinions and 13.83%/11.31% on Ciao, respectively.

• Exposure model has a greater impact on DENC compared with Social network confounder. It is reasonable since
Exposure model simulates the missing patterns, then Social network confounder can consequently debias the
potential confounding bias under the guidance of missing patterns.

A.4 Investigation on Different Network Embedding Methods

We construct network embedding with node2vec [11] that has the capacity of learning richer representations by
adding flexibility in exploring neighborhoods of nodes. Besides, by adjusting the weight of the random walk between
breadth-first and depth-first sampling, embeddings generated by node2vec can balance the trade-off between homophily
and structural equivalence [13], both of which are essential feature expressions in recommendation systems. The key
characteristic of node2vec is its scalability and efficiency as it scales to networks of millions of nodes.

By comparison, we further investigate how different network embedding methods impact the performance of DENC,
i.e., LINE [50], SDNE [51].

• LINE [50] preserves both first-order and second-order proximities, it suits arbitrary types of information networks
and can easily scale to millions of nodes.

• SDNE [51] is a Deep Learning-based network embedding method, like LINE, it exploits the first-order and
second-order proximity jointly to preserve the network structure.
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We train the three embedding methods with embedding size 𝑑=10 while the batch size and epochs are set to 1024 and
50, respectively. The experimental results are given in Table 4.

Table 4. Experimental results of DENC under node2vec, LINE, SDNE.

Dataset Embedding MAE RMSE Precision@20 Recall@20
Epinions node2vec 0.2684 0.5826 0.2832 0.2501

LINE 0.4241 0.6307 0.1736 0.1534
SDNE 0.4021 0.6137 0.1928 0.1837

Ciao node2vec 0.2487 0.5592 0.2703 0.2212
LINE 0.5218 0.7605 0.1504 0.1209
SDNE 0.4538 0.6274 0.2082 0.1594

The results show that under the same experimental settings, DENC performs worse with embeddings trained by
LINE and SDNE compared with node2vec on both datasets. Although LINE considers the higher-order proximity, unlike
node2vec, it still cannot balance the representation between homophily and structural equivalence [13], in which
connectivity information and network structure information can be captured jointly. The results show that our DENC
benefits more from the balanced representation that can learn both the connectivity information and network structure
information. Based on higher-order proximity, SDNE develops a deep-learning representation method. However,
compared with node2vec, SDNE suffers from higher time complexity. The deep architecture of SDNE framework mainly
causes the high time complexity of SDNE, the input vector dimension can expand to millions for the auto-encoder in
SDNE [6]. Thus, we consider it reasonable that our DENC with SDNE embedding cannot outperform the counterpart
with node2vec embedding under the same training epochs, since it requires more iterations for SDNE to get finer
representation.
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