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ABSTRACT

The log-rank conjecture states that the communication complexity of a

boolean matrix A is bounded by a polynomial in the log of the rank of

A. Equivalently, it says that the chromatic number of a graph is bounded

quasi-polynomially in the rank of its adjacency matrix. This old conjecture

is well known among computer scientists and mathematicians, but despite

extensive work it is still wide open. We survey results relating to the

log-rank conjecture, describing the current state of affairs and collecting

related questions. Most of the results we discuss are well known, but some

points of view are new. One of our hopes is to paint a path to the log-rank

conjecture that is made of a series of smaller questions, which might be

more feasible to tackle.
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1. Introduction

The notorious log-rank conjecture asserts that communication complexity and

the log of the rank of a boolean matrix (that is, a matrix whose entries are

either 0 or 1) are polynomially related. Let A be a boolean matrix, and denote

by r(A) the rank of A over the reals. Let the binary rank of A, denoted p(A),

be the minimum number p such that there exist boolean matrices {Bi}pi=1

satisfying r(Bi) = 1 and
∑

iBi = A. It follows from sub-additivity of rank

that r(A) ≤ p(A). The log-rank conjecture says that there exists a constant c

such that

p(A) ≤ 2log
c r(A).

Observe that the binary rank of A is equal to the minimal size of a partition

of the 1-entries of A into monochromatic sub-matrices (that is, rank-1 sub-

matrices). For this reason binary rank is sometimes also called the partition

number. The binary rank/partition number of a boolean matrix A and the

communication complexity of A, denoted cc(A), are closely related,

(1) p(A) ≤ 2cc(A) ≤ 2log
2 p(A).

Therefore, to keep things simple, we do not define communication complexity

here and instead make do with the definition of binary rank. The interested

reader is referred to [25] to learn the basics of communication complexity and

its relation to the partition number. The inequalities in Equation (1) are both

tight by the way, see [17].

The definition of partition number is easily extended to non-negative integer

matrices: it is the minimum number p such that there exist non-negative integer

matrices {Bi}pi=1 satisfying r(Bi) = 1 and
∑

i Bi = A. When we do not restrict

to boolean matrices though, it is easy to come up with a matrix A exhibiting

a large gap between r(A) and p(A). Let A = (ai,j) be the n × n matrix

satisfying ai,j = i + j, where indexing begins from 1. It is not hard to verify

that the rank of this Hankel matrix is equal to 2. The partition number on

the other hand is n. All entries on the anti-diagonal of A are equal to n + 1.

Any 2 × 2 submatrix of A including two anti-diagonal entries is necessarily of

rank 2 as it cannot have zero determinant. Thus all anti-diagonal elements must

be in different sets of the partition. Hence, the restriction to boolean matrices

is crucial to the log-rank conjecture. We expand on this issue and also discuss

other variations of the log-rank conjecture in Section 5.
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In the communication complexity context, the log-rank conjecture was first

phrased (as a question) by Lovász and Saks [33, 34]. The reason they asked

this question is that for the family of matrices they considered, the log-rank

conjecture held. But, as Lovász and Saks observed, the log-rank conjecture

is equivalent to a conjecture in graph theory suggested (with somewhat dif-

ferent parameters) by van Nuffelen [38] and Fajtlowicz [14]. The latter work

is based on a computer program, called Graffiti, that makes graph-theoretic

conjectures. Both van Nuffelen and Graffiti (Fajtlowicz) conjectured that the

chromatic number of a graph is bounded from above by the rank of its adja-

cency matrix. We describe the connection between the log-rank conjecture and

the graph theoretic conjecture in Section 2, where we also discuss other aspects

of the log-rank conjecture that are specific to graphs.

As mentioned above, the conjecture of van Nuffelen and Fajtlowicz was

that χ(G) ≤ r(AG), where χ(G) is the chromatic number of the graph G

and AG is its adjacency matrix. This conjecture was too strong, and a graph G

with χ(G)=32 and r(AG)=29 was found by Alon and Seymour [7]. Razborov

[40] proved that the gap between the chromatic number of a graph and the

rank of its adjacency matrix can be superlinear. An improved separation was

then given by Raz and Spieker [39]. They gave an infinite family of matrices for

which cc(A) ≥ log r(A) log log log r(A). Nisan and Wigderson [37] constructed

a boolean matrix A for which cc(A) = Ω(loglog2 3 r(A)) implying that the con-

stant c in the log-rank conjecture must be at least log2 3 ≈ 1.58. Kushilevitz,

in an unpublished work, gave an improved base-case example using the same

construction to show that c ≥ log3 6 (see [37] for details). The best known sepa-

ration is given by Göös, Pitassi and Watson [17], who showed that the constant

in the log-rank conjecture must be at least 2. We give the details of the best

known gaps in Section 4.

The known upper bounds in the log-rank conjecture are very far from the best

known lower bounds. It is not hard to see that p(A) ≤ 2r(A) for every boolean

matrix A, and that χ(G) ≤ 2r(AG) for every graph G. Kotlov and Lovász [23]

proved that the number of distinct rows/columns in the adjacency matrix of a

graph G is bounded by O(2r(AG)/2). It follows that χ(G) ≤ O(2r(AG)/2) as the

chromatic number is bounded by the number of distinct rows in AG. Kotlov

and Lovász showed that their bound is best possible, exhibiting a graph G

with no twin vertices, that is vertices corresponding to identical rows in

the adjacency matrix, containing Ω(2r(AG)/2) vertices. Kotlov [22] therefore
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used a different method to improve the upper bound to χ(G) ≤ O(r(43 )
r),

where r = r(AG). The next result is due to Lovett [35] who proved a signifi-

cantly improved bound p(A) ≤ 2O(
√

r(A) log r(A)), for every boolean matrix A.

Lovett’s bound is inspired by previous works with Ben-Sasson and Ron-Zewi

[11] and with Gavinsky [16]. Its starting point is a beautiful upper bound of

Nisan and Wigderson [37] depending on the largest size of a rank-1 submatrix,

and on rank. These upper bounds are the subject of Section 3.

To sum up, the goal of this survey is to collect results about the log-rank con-

jecture in order to highlight possible research directions. We describe known

upper bounds in Section 3, and known lower bounds in Section 4. In Section 2

we focus on aspects of the log-rank conjecture that relate to graphs. Here we

describe some questions that were not considered before. In Section 5 we con-

sider variants of the log-rank conjecture. In this section we try to identify where

the log-rank conjecture breaks when going to integer matrices, and attempt to

stretch a line between what is known and what is still not known.

2. Rank and chromatic number

As mentioned, the graph theoretic question, relating chromatic number and

rank, preceded the equivalent log-rank conjecture in communication complex-

ity. But for some reason this point of view received less attention. The commu-

nication complexity literature contains several questions that are derived from

the log-rank conjecture, e.g., the log-rank conjecture for special families of ma-

trices like the ones related to composed functions. In Section 2.2 we suggest

some graph theoretic questions related to the log-rank conjecture, that seem

natural and interesting in their own right. The simplest open question is: what

is the minimal multiplicity of −1 as an eigenvalue of the adjacency matrix of a

triangle-free graph? This question, and generalizations of it, are related to the

log-rank conjecture via the fooling set method.

This section is somewhat independent from the rest of this survey, but it

contains some basic results that are used later, which is why it appears first.

We start in Section 2.1 by giving the proof of the equivalence to the log-rank

conjecture in communication complexity, as it appears in [34], adding small

details when necessary.
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2.1. The equivalence to the log-rank conjecture. The equivalence of

the two conjectures uses the cover number of a matrix. Given a boolean ma-

trix A, the cover number of A, denoted by χ(A), is the minimum number χ

such that there exist boolean matrices {Bi}χi=1 with r(Bi) = 1 and Bi ≤ A for

each i, satisfying
∑

iBi ≥ A. Here the inequalities are entry-wise.

The cover number is of course upper bounded by the partition number, and

usually the gap can be very large. But in this case either the cover number of A,

or the cover number of its complement Ā (Ā = J − A where J is the all-ones

matrix), cannot differ much from the partition number.

Lemma 2.1 (Halstenberg and Reischuk [18, Theorem 1]): For every boolean

matrix A it holds that

log p(A) = logχ(A) logχ(Ā)(1 + o(1)).

A version of the above bound, with slightly weaker estimates, was first proved

by Aho, Ullman and Yannakakis [3].

Back to the equivalence of the log-rank conjecture and its graph theoretic

counterpart. Denote by AG the adjacency matrix of a graph G.

Lemma 2.2 (Lovász and Saks [34, Question 8.2]): The following statements are

equivalent:

(1) There is a constant c such that for every graph G

χ(G) ≤ 2log
c r(AG).

(2) There is a constant c′ such that for every boolean matrix A

χ(A) ≤ 2log
c′ r(A).

(3) The log-rank conjecture.

Proof. We start with (2) implies (1). Let G be an n-vertex simple graph, and

denote by A = AG the adjacency matrix of G. Then clearly the chromatic

number of G satisfies

χ(G) ≤ χ(Ā) ≤ 2log
c r(Ā) ≤ 2log

c(r(A)+1).

For the other direction, (1) implies (2), let A be a boolean matrix. Define

a graph G = GA = (VA, EA), where VA is the subset of row, column index

pairs (i, j) for which ai,j = 1. Two vertices v1 = (i1, j1) and v2 = (i2, j2) are

adjacent if ai1,j2 = 1 and also ai2,j1 = 1. That is, the vertices are adjacent if
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the corresponding two entries “span” a rank-1 submatrix of A. Observe that G

has a self loop on each of its vertices, and that the maximal (w.r.t. inclusion)

cliques of GA are exactly the maximal rank-1 sub-matrices of A.

Therefore, the cover number of A satisfies

χ(A) = χ(Ḡ) ≤ 2log
c r(AḠ) ≤ 2log

c(r(AG)+1).

Here Ḡ is the complement of the graph G. Since G has self loops, we have

that the adjacency matrix of the complement graph is the complement of the

adjacency matrix AG, that is AḠ = ĀG. As a consequence, the rank of AG and

the rank of AḠ differ by at most 1.

But,AG is a submatrix of the tensor product A⊗At (simply take rows/columns

that correspond to pairs (i, j) for which ai,j = 1) and therefore

χ(A) ≤ 2log
c(r2(A)+1).

It is left to show that (2) is equivalent to (3). Assume the log-rank conjecture

is true, then for every boolean matrix A there is a constant c such that

χ(A) ≤ p(A) ≤ 2log
c r(A).

For the other direction, assume (2) holds. Then there is a constant c such that

for every boolean matrix A, χ(A) ≤ 2log
c r(A). Applying the same reasoning

to the complement Ā we get that also χ(Ā) ≤ 2log
c r(Ā) ≤ 2log

c(r(A)+1). By

Lemma 2.1 we conclude that

log p(A) ≤ O(logχ(A) logχ(Ā)) ≤ O((2 log r(A))2c).

2.2. The extended fooling set method. Let A be anm×n boolean matrix.

A fooling set for A is a set of row, column index pairs {(i1, j1), . . . , (ik, jk)}
such that

(1) ait,jt = 1 for all t = 1, . . . , k,

(2) ais,jt · ait,js = 0 for all s 6= t.

Note that these conditions in particular imply that is 6= it and js 6= jt for

all s 6= t.

If A has a fooling set of size k, then there is a k × k submatrix B of A that

(after a permutation of rows and columns) has ones on the main diagonal and

satisfies B ◦ Bt = Ik, where ◦ is the Hadamard (entry-wise) product, and Ik is

the k × k identity matrix. As k = r(B ◦ Bt) ≤ r(B)2, if A has a fooling set

of size k then r(A) ≥
√
k. Thus the rank bound is never much worse than the
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fooling set bound. Amazingly, this simple argument is nearly tight. Shigeta

and Amano [44] give a construction of n × n boolean matrices with a fooling

set of size n and rank n1/2+o(1).

Let fs(A) be the maximum k such that A has a fooling set of size k. It is

not hard to verify that fs(A) ≤ χ(A) ≤ p(A): in terms of GA, a fooling set

provides an independent set in GA of cardinality k, therefore, the chromatic

number of the complement of GA (which is equal to χ(A)) is at least k. The

fooling-set method is one of the first lower bound techniques for communication

complexity. This method does not always give good lower bounds [13]. In fact,

for a random n× n boolean matrix A it holds that fs(A) = O(log n) with high

probability, whereas r(A) = χ(A) = n almost surely. There are also explicit

examples with an exponential gap. For example, let Ft
2 = {v1, . . . , v2t} be

the vectors in the t-dimensional vector space over F2, and consider the 2t × 2t

matrix H whose (i, j)-th entry is viv
T
j . That is, the entries of H are the inner

products of vectors in Ft
2. It is not hard to verify that r(H) ≥ 2t − 1. In fact,

if we change each 0-entry in H to 1 and each 1-entry to −1 then the resulting

matrix is a Hadamard matrix, namely a square matrix whose entries are ±1

and whose rows are mutually orthogonal. On the other hand fs(H) ≤ t2, since

the rank over F2 of H is at most t, and the size of any fooling set is bounded

from above by the square of the rank over any field.

Dietzfelbinger et al. suggested a strengthening of the fooling-set method called

the extended fooling set method [13]. Let G = GA. As mentioned above, a

fooling set provides a clique in Ḡ of size k, and therefore a lower bound on

the chromatic number of Ḡ. This method can be extended by looking for a

subgraph of Ḡ with k vertices whose independence number is upper bounded

by some integer d, providing the lower bound k/d for the chromatic number.

A fooling set of order d for a boolean matrix A is therefore a subset of the

1-entries of A satisfying that no d + 1 of them belong to a rank-1 submatrix

of A, together.

Formally, a fooling set of order d for an m × n boolean matrix A is a set of

row, column index pairs F = {(i1, j1), . . . , (ik, jk)} such that

(1) ait,jt = 1 for all t = 1, . . . , k,

(2) for any selection of d + 1 index pairs from F , the submatrix of A that

is spanned by them has rank larger than 1.

We define fsd(A) as the maximum cardinality of a fooling set of order d for A.

Note that fs(A) = fs1(A), and that fsd(A)/d ≤ χ(A) for every d ≥ 1.
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If for some d we find a boolean matrix A with a large gap between rank

and fsd(A)/d, then this also exhibits a gap between rank and χ(A), and hence

also p(A). This is therefore an approach that can possibly refute the log-rank

conjecture. Interestingly, as shown by the following theorem, if no such refuta-

tion can be found, the log-rank conjecture does hold, at least up to log factors.

Theorem 2.3 (Dietzfelbinger et al. [13, Theorem 1.9]): For everym×n boolean

matrix A there is natural number d such that

χ(A) = O
( fsd(A)

d
log(mn)

)

.

The above theorem, combined with Lemma 2.2, implies that the log-rank

conjecture is (almost) equivalent to the statement: there is a constant c such

that for every boolean matrix A, and every d, it holds that fsd(A)
d ≤ 2log

c r(A).

It is therefore natural to ask how the extended fooling-set method relates to

rank. A nice aspect of this question is that it can be formulated in the language

of forbidden minors in graphs. In addition, we can break it down by considering

a fixed d at a time. The question is interesting already for d = 2.

Let g(d,k) be the minimum rank of a matrix spanned by a fooling-set of order d

and cardinality k. The relationship between fsd and rank is determined by the

behaviour of g(d, k). Since we are interested in asymptotic behaviour, we can

replace g(d, k) by a symmetric version, involving only graphs. Denote by f(d, k)

the minimum rank of the adjacency matrix of a (d + 1)-clique free graph on k

vertices, with self loops. Obviously g(d, k) ≤ f(d, k). Since B ◦Bt is symmetric

and r(B ◦Bt) ≤ r(B)2, we also have that f(d, k) ≤ g(d, k)2. Note that if B is a

matrix spanned by a fooling-set of order d and cardinality k, then B ◦Bt is the

adjacency matrix of a (d+ 1)-clique-free graph on k vertices, with self loops.

The goal is therefore to study f(d, k). Put as a question, it is

Question 2.4: Fix a natural number d ≥ 1, let G be a k-vertex graph with self

loops, and let AG be the adjacency matrix of G. What is the minimum possible

rank of AG, if G does not contain a clique of size d+ 1?

For d = 1 (i.e., the fooling-set method) the question is trivial. But for d = 2

it is already interesting and resolving it might hint on whether the log-rank

conjecture is true or false. The question becomes:

Question 2.5: What is the minimum rank of the adjacency matrix of a triangle-

free graph on k vertices, with self loops?
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Let AG be the adjacency matrix of a triangle-free simple graph on k vertices,

then Ik +AG is the adjacency matrix of a triangle-free k-vertex graph with self

loops. Note that λ is an eigenvalue of Ik+AG if and only if λ−1 is an eigenvalue

of AG, simply because every vector is an eigenvector of Ik for the eigenvalue 1.

In particular, the multiplicity of 0 as an eigenvalue of Ik + AG is equal to the

multiplicity of −1 as an eigenvalue of AG. Therefore, as the rank is equal to

the number of non-zero eigenvalues, the matrix Ik +AG has rank r if and only

if −1 is an eigenvalue of AG with multiplicity k − r. Therefore, the question is

alternatively:

Question 2.6: What is the maximum multiplicity in which the value −1 can

repeat as the eigenvalue of the adjacency matrix of a triangle-free simple graph

on k vertices?

Note that if G has an independent set of size α then r(In + AG) ≥ α be-

cause then In + AG contains an identity matrix of size α. Turán showed that

an n-vertex graph with average degree δ has an independent set of size at

least n/(δ+1) [47]. A delightful one-page proof of this fact is given in the book

The Probabilistic Method [8], after Chapter 6. Turán’s theorem can be used to

give the following simple bound on f(2, k).

Lemma 2.7: For k > 2 it holds that
√
k ≤ f(2, k) ≤ ⌈k/2⌉.

Proof. For the upper bound take a matching of size ⌊k/2⌋, plus maybe an

isolated vertex if k is odd.

For the lower bound, let A be the adjacency matrix of a triangle-free

graph G = (V,E) on k vertices. By Turán’s theorem, r(Ik + A) ≥ n/(δ + 1),

where δ is the average degree. Let ∆ be the maximum degree of G. We will as-

sume that ∆ > 1 as otherwise G is a matching (plus, perhaps, isolated vertices)

and we have the lower bound of ⌈k/2⌉ ≥
√
k for k > 2.

As G is triangle free, the neighbors of any vertex form an independent set.

This means that G contains K1,∆, the complete bipartite graph with color

classes of size 1 and ∆, as an induced subgraph. It is easily verified that

r(I∆+1 +AK1,∆
) = ∆+ 1

for ∆ > 1. Thus we have

r(Ik +A) ≥ max
{ k

δ + 1
,∆+ 1

}

≥
√
k.
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A slight improvement to the lower bound on f(2, k) in Lemma 2.7 follows

from a connection with the Ramsey number R(3, t), the minimum number n

such that any n vertex graph contains either a triangle or an independent set of

size t. Ajtai, Komlós and Szemerédi [4] show that a k vertex triangle-free graph

with average degree δ has an independent set of size at least 0.01(k/δ) ln(δ),

which implies

f(2, k) = Ω(
√

k ln(k)).

Ramsey bounds can also be used to generalize Lemma 2.7 to any d. To get a

prettier bound, we first show the following little lemma.

Lemma 2.8: Let G be an n-vertex graph with no (d + 1)-clique. If G has an

independent set of size α then

r(In +AG) ≥ min{⌊n/d⌋, α+ 1}.

Proof. Let S be a maximal independent set inG of size at least α. If |S| ≥ ⌊n/d⌋,
then we are done, so suppose |S| < ⌊n/d⌋.
Every vertex in S̄ has a neighbor in S, as S is maximal. Since |S| < ⌊n/d⌋ we

have |S̄| > (d− 1)|S| and there is a vertex v ∈ S which has at least d neighbors

in S̄.

Let T be the set of these neighbors. As G does not have a (d + 1)-clique

and every vertex in T is adjacent to v, there must be u1, u2 ∈ T that are not

adjacent.

Thus G contains an induced bipartite graph where one color class is S and

the other is {u1, u2}. Let

B =

[

0|S|×|S| Ct

C 02×2

]

be the adjacency matrix of this bipartite graph. The result will follow if we

show that the multiplicity of −1 as an eigenvalue of B is at most 1, as then

r(I|S|+2 +B) ≥ |S|+ 1.

The multiplicity of −1 as an eigenvalue of B is equal to the multiplicity of 1

as a singular value of C, which in turn is equal to the multiplicity of 1 as an

eigenvalue of D = CCt.
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Letting C1, C2 denote the rows of C we have

D =

[

‖C1‖2 〈C1, C2〉
〈C2, C1〉 ‖C2‖2

]

.

Assume for contradiction that both eigenvalues of D are 1. Then the trace of D

is 2 which means that ‖C1‖2 = ‖C2‖2 = 1, as this is the only way for the sum

of the squares of two integers to be 2. We further know that 〈C1, C2〉 6= 0,

as u1, u2 are both adjacent to v. Subject to ‖C1‖2 = ‖C2‖2 = 1 we must then

have 〈C1, C2〉=1, implying that the determinant ofD is 0, a contradiction.

Lemma 2.9: For k > d it holds that

Ω(k1/d(ln(k)/d)(d−1)/d) = f(d, k) ≤ ⌈k/d⌉.

Proof. For the upper bound take the union of d-cliques.

For the lower bound, let G be a k-vertex graph without a (d + 1)-clique

such that r(Ik + AG) = f(d, k). Let α be the size of a largest indepen-

dent set in G. By Lemma 2.8 we know that f(d, k) ≥ min{⌊k/d⌋, α + 1}.
If the minimum is achived by ⌊k/d⌋ then we are done, so suppose we just

know f(d, k) ≥ α+ 1. This means that G contains neither a (d+ 1)-clique nor

an independent set of size f(d, k), which means k < R(d+ 1, f(d, k)). Ajtai et

al. [4] show that R(d+ 1, t) ≤ 5000d+1td/ ln(t)d−1. Thus

f(d, k) = Ω(k1/d(ln(k)/d)(d−1)/d).

Observe that the log-rank conjecture would imply that f(d, k) is closer to the

upper bound than the lower bound in the statement of Lemma 2.9, as d grows.

If the log-rank conjecture is true then there is a constant c such that

f(d, k) ≥ 2
c
√

log k/d,

for every d ≥ 1. And if the above bound holds then the log-rank conjecture

holds up to a log log additive factor. The log-rank conjecture therefore comes

down to the existence (or non-existence) of a graph without (d+1)-cliques, for

some d, and rank much lower than 2
c
√

log k/d. Given that the best upper bound

we currently have is k/d, achieved by taking the union of d-cliques, this is one

point of view where the log-rank conjecture actually seems plausible, unlike

many other perspectives where it usually feels the other way around.
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3. Upper bounds

Although the gap in our knowledge regarding the log-rank conjecture is very

wide, there are interesting upper bounds. Here is a partial list of older results,

one of which we already mentioned:

(1) cc(A) ≤ logχ(A) logχ(Ā)(1 + o(1)) (Theorem 1 [18]),

(2) cc(A) ≤ (logχ(A) + 2)(log r(A) + 1) (Theorem 2.8 [34]),

(3) cc(A) ≤ fs(A)(χ(Ā) + 1) (Theorem 3.6 [32]).

Gavinsky and Lovett [16] augmented the above repertoire of upper bounds

on deterministic communication complexity. They proved that when the rank

of the matrix is low, deterministic communication complexity of a matrix A

is bounded by randomized communication complexity, and also other relaxed

complexity measures.

All the upper bounds mentioned above, the older results and the newer ones,

can be derived from an upper bound by Nisan and Wigderson [37], described

in Section 3.1. This upper bound is probably what led Nisan and Wigderson

to state the log-rank conjecture, which previously only appeared as a question

by Lovász and Saks [33, 34]. It is also the starting point for Lovett’s improved

bound in terms of rank [35], described in Section 3.2. It is used to prove other

improved bounds, in terms of relaxed notions of rank, described in Section 3.3.

3.1. The basic upper bound. Known upper bounds on communication com-

plexity, involve two complexity measures, one serves as a potential function

(e.g., fs(A) or r(A)), and the other (χ(A) or χ(Ā)) serves as a pool of large

submatrices of small rank (either 1 or 0). The log-rank conjecture can be seen

as asking whether rank alone can play both roles. In the protocol of Nisan and

Wigderson, rank serves like before as a kind of a potential function, while χ(A)

and χ(Ā) on the other hand are replaced by a more rudimentary measure,

involving only the size of a largest submatrix of rank at most 1.

For an integer matrix A, denote by α(A) the minimum integer d such that

every s × t submatrix of A has a submatrix of rank at most 1 and size at

least 2−dst.

Theorem 3.1 (Nisan and Wigderson [37, Theorem 2]): Let A be an m × n

integer matrix. If the entries of A contain at most M different integer values

then

log p(A) = O(log r(A)(α(A) + log r(A) + log logM)).
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Proof. Let B be a submatrix of A of rank at most 1 and size at least 2−α(A)mn.

Divide A into four disjoint sub-matrices B,C,D,E, where C is the submatrix

of A sharing the rows of B, and D is the submatrix with the same columns set

as B.

It holds that r(C)+ r(D) ≤ r(A)+ 1. We construct our partition recursively.

If r(C) ≤ r(A)/2 + 1 we start with the partition containing two submatrices,

the one containing C and B and the one with D and E. Otherwise, it must

be that r(D) ≤ r(A)/2 + 1 and therefore we choose instead the submatrix

containing D and B and the one with C and E. In both cases, we start with

two submatrices, one of which has rank at most r(A)/2 + 2 and the other has

at most (1 − 2−α(A))mn entries. We then recursively refine the submatrices in

the partition, in a similar way, until all the submatrices are of rank at most 1.

The resulting recursion tree has the following properties:

(1) The recursion tree is a binary tree whose nodes are labelled by a pair

of labels (rank, size).

(2) For every inner node v, the rank label decreases by roughly a factor of

2 when moving to the left child of v, and the size label decreases by a

factor of (1 − 2−α(A)) when going to the right child.

(3) The leaves of the tree are the nodes for which either rank or size is equal

to 1. These correspond to the submatrices in our partition.

To evaluate the number of leaves in the tree, match each leaf except the left

most one to its closest ancestor where the rank label decreased for the last

time. A simple estimate gives that the number of leaves matched to nodes with

rank label roughly r/2i is at most (2α(A) logmn)i. Assuming, without loss of

generality, that the matrix contains no repeated rows or columns, we have that

mn ≤ M2r(A). Summing up over i gives that the number of leaves is at most

2O(log r(A)(α(A)+log r(A)+log logM)),

for every integer matrix A containing at most M different integer values.

Using almost the same proof, it is possible to derive alternative bounds

on p(A). Here is an example, restricted to boolean matrices. For a matrix A

let T (A) be the maximum k such that A contains a k× k lower triangular sub-

matrix with 1’s on the main diagonal and 0’s above it. Also let α0(A) be the

minimum integer such that every s×t submatrix of A has a submatrix of rank 0

and size at least 2−α(A)st. Then
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Theorem 3.2: For every m× n boolean matrix A it holds that

log p(A) = O(log T (A)(α0(A) + log logmn)).

Note that T (A) ≤ r(A) and even T (A) ≤ fs(A) for every sign matrix A. The

above bound therefore generalizes the bound in Theorem 3.1. The presence

of T (A), r(A) or some other related measure like fs(A) is unavoidable here. Con-

sider the identity matrix In for example, it has p(In) = n while α0(In) = Θ(1).

The right-hand side of the inequality in 3.2 must therefore include an additional

complexity measure that attains a high value on the identity matrix.

Another corollary of Theorem 3.1 is that the log-rank conjecture is true if and

only if α(A) is bounded from above by a polynomial in log(r(A)). As observed

by Nisan and Wigderson [37], it follows that the log-rank conjecture is true if

and only if the following conjecture holds:

Conjecture 3.3: There is a constant c such that everym×n boolean matrix A

contains a submatrix of rank at most 1 and size at least

mn

2log
c r(A)

.

The above reformulation nicely highlights the difficulty in resolving the log-

rank conjecture. It requires proving that when the rank of a boolean matrix

is small, it contains a large rank-0 or rank-1 submatrix. Either proving or

disproving such a statement is a challenging task that requires ingenuity.

To prove the log-rank conjecture one would need to relate the rank of a ma-

trix A, a global property, to the maximum size of a rank-1 submatrix, a local

property. These kind of relations are known to be hard to prove. Coming up

with a counterexample to the log-rank conjecture requires finding an explicit

boolean matrix A with low rank that does not contain large sub-matrices of

small rank. In other words, it requires finding strong two-source extractors (al-

ternatively, explicit bounds on bipartite Ramsey numbers), with the additional

condition that the rank of the matrix is low. The problem of finding strong

two-source extractors (or bounding bipartite Ramsey numbers) is hard as it is,

and has found good solutions only in recent years. Adding the requirement that

the overall rank is low makes the problem even harder.

3.2. An improved bound in terms of rank. Even though the bound in

Theorem 3.1 has not helped resolve the log-rank conjecture yet, it has given rise

to a few improvements on the trivial bound p(A) ≤ 2r(A). We describe these
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improvements in this and the following subsections. These improved bounds

work by finding a better upper bound on α(A) in terms of rank (this subsection)

or one of its variants (the next subsection), and then applying Theorem 3.1.

This subsection is devoted to proving the following result:

Theorem 3.4 (Lovett [35, Theorem 1.1]): For every boolean matrix A

p(A) = 2Õ(
√

r(A)).

Notation and basic definitions. We begin with some basic definitions and

notations. It will be convenient for us in proving Theorem 3.4 to work with

sign matrices, instead of boolean matrices. A sign matrix is a matrix whose

entries are either 1 or −1. Note that both rank and p do not change much when

we go from boolean values to the sign version. With a slight abuse of notation

we think of a submatrix of a sign matrix in two ways. One is the conventional

way and the other is as follows. Let A be an m × n matrix and B an s × t

submatrix of A. Let ai,j be the (i, j)-th entry of A and similarly bi,j denotes

an entry of B. We sometimes think of B, for purposes of computations alone,

as an m × n matrix by padding it with zeros. This way we can compute the

inner product of B and matrices with the same dimensions as A. For instance

we have
∑

i,j ai,jbi,j =
∑

i,j bi,jbi,j = ‖B‖22 = st.

Define a weight matrix as a real matrix with non-negative entries that sum

up to 1. For an m×n sign matrix A, an m×n weight matrix W , a submatrix B

of A, and a value v ∈ {±1}, let

W (B) =
∑

i,j:bi,j 6=0

wi,j ,

W (v,B) =
∑

i,j:bi,j=v

wi,j ,

S(W,B) =

∣

∣

∣

∣

∑

i,j

wi,jbi,j

∣

∣

∣

∣

.

Discrepancy and corruption. For the proof we need two relaxed versions

of α(A), discrepancy and corruption. For corruption, instead of looking for a

large rank-1 matrix, we search for a large matrix that is close to being low rank,

a “corrupted” low rank matrix. Another option is to consider submatrices with

large discrepancy between the two values. We define two notions of corruption,

each with its own useful properties.
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For the first definition, let A be anm×n sign matrix, let 0 ≤ ρ < 1, and let W

be a weight matrix of the same dimensions as A. Let fW (A) ∈ {1,−1} be the

value with less weight in A (that is, W (fW (A), A) ≤ W (−fW (A), A)), breaking

ties arbitrarily. Denote by αρ(W,A) the minimum integer k such that there ex-

ists a submatrix B of A satisfying W (B) ≥ 2−k and W (fW (A), B)/W (B) ≤ ρ.

That is, the weight of B is at least 2−k, and the weight of fW (A)’s in B is at

most ρ times the weight of B.

The second definition is a variant of αρ, hence we use the same notations

as the previous paragraph. Denote by α∗
ρ(W,A) the minimum integer k such

that A contains a submatrix B satisfying

W (B) ≥ 2−k and W (fW (A), B)/W (B) ≤ ρW (fW (A), A).

Note that α(A) ≤ α0(U,A) = α∗
0(U,A), where U = 1

mnJ is the matrix with

uniform weights (recall that J is the all-ones matrix).

Finally, we define discrepancy, which takes a complementary point of view.

In discrepancy the focus is on the maximum possible discrepancy between the

weight of entries of each type, instead of the weight of the submatrix. Let A be

an m × n sign matrix, and let W be a weight matrix of the same dimensions

as A. The discrepancy of A with respect to W , denoted by disc(W,A), is the

minimum value of S(W,B)−1 over all sub-matrices B of A. Note that here the

weight of B is not taken into account. The discrepancy of A, denoted disc(A),

is the maximum value of disc(W,A) over all weight matrices W of the same

dimensions as A.

The plan. A core theme of [11, 16, 35], leading to the improved bound in

terms of rank, is to replace α(A) with discrepancy somehow. This tempting

approach was raised already by Nisan and Wigderson in [37]. They proved

that disc(U,A) ≤ r3/2(A), for every sign matrix A. This bound was improved

to disc(A) ≤
√

r(A); see [29, 30] for details. It is therefore left to prove an upper

bound on communication complexity in terms of discrepancy. Such bounds

were known in the literature, but the best one gave cc(A) ≤ disc2(A) which

is insufficient for our purposes, as this way we can only retrieve the trivial

bound p(A) ≤ 2r(A) again. A main contribution of [11, 16, 35] is therefore an

improved bound in term of discrepancy, and a main tool is amplification, that

is, starting with a submatrix with a slight bias towards one of the signs (say +1)

and amplifying it until we reach a submatrix with no −1 entries. We therefore
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break the proof into four steps. The first three implement the amplification

process, and the last one employs the relation between discrepancy and rank.

Note that the amplification process is where we use the definitions of corruption,

to bridge between discrepancy and α(A), since the definitions of corruption

(especially α∗
ρ) naturally allows amplification.

The steps of the proof are:

(1) Relate disc(W,A) to αρ(W,A), for every weight matrix W . The ρ we

get here though is close to 1/2, ρ = 1/2− 1/4d.

(2) Relate αρ(Λ, A) to α∗
ρ(U,A). Here Λ is a specific weight matrix defined

later.

(3) Relate α∗
ρ(U,A) to α(A). This step uses the natural amplification prop-

erties of α∗
ρ to go from ρ = 1/2− 1/4d to arbitrarily small ρ.

(4) Use the fact that disc(A) ≤
√

r(A), for every sign matrix A.

3.2.1. Step 1. We show that it is possible to translate low discrepancy to the

existence of a submatrix of (relatively) large weight having some bias between

signs.

Lemma 3.5 ([35, 45]): Let A be a sign matrix, let W be a weight matrix with

the same dimensions as A, and let d = disc(W,A). Then

α1/2−1/4d(W,A) ≤ 1 + log d.

Proof. By definition of disc(W,A) it follows that there is some submatrix B

of A such that

(2) S(W,B) =

∣

∣

∣

∣

∑

i,j

wi,jbi,j

∣

∣

∣

∣

≥ 1

d
.

First observe that, incurring a factor of 2, we can assume that fW (A) = fW (B).

That is, we can assume that in both A and B the same value has less weight.

Otherwise, assume without loss of generality that fW (A) = −1 but
∑

i,j

wi,jbi,j < 0.

Then the weight of entries outside of B is at least 1
d . These entries can be

partitioned into two sub-matrices, hence there is a submatrix B′ of A for which

(3)
∑

i,j

wi,jb
′
i,j ≥

1

2d
.
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Therefore, let B be a submatrix of A satisfying fW (A) = fW (B) and
∣

∣

∣

∣

∑

i,j

wi,jbi,j

∣

∣

∣

∣

≥ 1

2d
.

Denote by P (B) (respectively N(B)) the weight of 1’s (respectively −1’s) in B.

That is, P (B) = W (1, B) and N(B) = W (−1, B). We have
∑

i,j

wi,jbi,j = P (B)−N(B),

and

W (B) = P (B) +N(B).

Hence, in case fW (A) = fW (B) = −1 and
∑

i,j wi,jbi,j ≥ 0 we get

N(B) =
1

2
W (B)− 1

2

∑

i,j

wi,jbi,j

≤ 1

2
W (B)− 1

4d

≤ 1

2
W (B)− 1

4d
W (B)

≤
(1

2
− 1

4d

)

W (B).

In the other possible case, that fW (A) = fW (B) = 1 and
∑

i,j wi,jbi,j ≤ 0, we

similarly have

P (B) =
1

2
W (B) +

1

2

∑

i,j

wi,jbi,j

≤ 1

2
W (B)− 1

4d

≤ 1

2
W (B)− 1

4d
W (B)

≤
(1

2
− 1

4d

)

W (B).

In both cases, we find that the sign with less weight in A has weight at

most (12 − 1
4d )W (B) in B, which concludes the requirements as

W (B) ≥
∣

∣

∣

∣

∑

i,j

wi,jbi,j

∣

∣

∣

∣

≥ 1

2d
.

We conclude that α1/2−1/4d(A) ≤ 1 + log d.
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3.2.2. Step 2. Let A be a sign matrix, and denote Λ = ΛA the weight matrix

defined by

ai,j = −1 ⇒ λi,j =
1

2N(A)
,(4)

ai,j = 1 ⇒ λi,j =
1

2P (A)
.(5)

Lemma 3.6: For every sign matrix A and 0 ≤ ρ ≤ 1/2, we have that

α∗
2ρ(U,A) ≤ αρ(Λ, A).

The proof of this lemma is straightforward, but technical. If the reader is

familiar with the idea of boosting, then in a way this uses a similar idea. The

intuition is revealed when considering the case of a balanced sign matrix A,

satisfying P (A) = N(A). In this case, the two notions α∗
2ρ(U,A) and αρ(Λ, A)

exactly coincide. We leave it to the reader to complete the details of the general

case, or look at the proof of Lemma 7 in [45].

3.2.3. Step 3. So far we have that

α(A) ≤ α0(U,A) = α∗
0(U,A)

and

α∗
1−1/2d(U,A) ≤ α1/2−1/4d(Λ, A) ≤ 1 + log d,

where d = disc(A). It remains to relate α∗
0(U,A) and α∗

1−1/2d(U,A). The fol-

lowing lemmas give a tool to amplify the bias and go from 1−1/2d to arbitrarily

small bias.

Lemma 3.7: For every m × n sign matrix A, and every 0 ≤ ρ1, ρ2 ≤ 1, there

exists a weight matrix W such that

α∗
ρ1ρ2

(U,A) ≤ α∗
ρ1
(U,A) + α∗

ρ2
(W,A),

where W is uniform over some submatrix B of A.

Proof. Let k1 = α∗
ρ1
(U,A), then by the definition of α∗

ρ1
there exists an s×t sub-

matrix B ofA satisfying U(B)≥2−k1 and U(fU (A), B)/U(B) ≤ ρ1U(fU (A), A).

For simplicity assume without loss of generality that fU (A) = −1, then we have

U(−1, B) ≤ ρ1U(−1, A)
st

mn
.
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Let W be the uniform weight matrix over the entries of B. That is, for entries

outside B the weight is 0, and the weight of entries in B is 1/st. Note that the

above inequality implies fW (A) = fU (A) = −1. Let k2 = α∗
ρ2
(W,A), then there

exists a submatrix C of B satisfying

W (C) ≥ 2−k2 and W (−1, C)/W (C) ≤ ρ2W (−1, A).

Therefore

U(−1, C)/U(C) = W (−1, C)/W (C)

≤ ρ2W (−1, A)

= ρ2W (−1, B)

= ρ2U(−1, B)
mn

st

≤ ρ2ρ1U(−1, A)
st

mn

mn

st

≤ ρ2ρ1U(−1, A).

To conclude the proof observe that

U(C) =
|C|
mn

=
st

mn

|C|
st

= U(B)W (C) ≥ 2−k12−k2 .

Using Lemma 3.7 repeatedly gives:

Corollary 3.8: For every sign matrix A, 0 ≤ ρ ≤ 1, and an integer l > 0,

there exist weight matrices W1, . . . ,Wl such that

α∗
ρl(U,A) ≤

l
∑

i=1

α∗
ρ(Wi, A),

where each Wi is uniform over some submatrix Bi of A.

Lemma 3.7 and Corollary 3.8 allow to amplify the bias, which is almost all we

need; we also need a way of stopping this process at some point. This breaking

point is given by the following lemma, which is a nice contribution of [11, 16, 35].

Lemma 3.9 ([16]): Let A be an m×n sign matrix with r = r(A). Assume that

either the fraction of 1’s or the fraction of −1’s in A is at most 1/4r. Then A

contains a rank-1 submatrix of size at least mn
4 .
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Combining everything together. Let A be a sign matrix with r = r(A).

Lemma 3.9 implies that

α(A) ≤ α1/4r(U,A) + 2 ≤ α∗
1/4r(U,A) + 2.

Let l = 2d(2 + ⌈log r⌉), then (1 − 1/2d)l ≤ 1/4r. Therefore, by Corollary 3.8,

there exist weight matrices W1, . . . ,Wl such that

α∗
ρl(U,A) ≤

l
∑

i=1

α∗
ρ(Wi, A).

Since, as stated in Corollary 3.8, each Wi is uniform over some submatrix Bi

of A, we get from Lemma 3.6 that

α∗
1−1/2d(Wi, A) ≤ α1/2−1/4d(Λi, A).

Applying Lemma 3.5 we conclude that

α(A) = O(d log d log r).

3.2.4. Step 4. It is left to use the fact that disc(A) ≤
√

r(A), and to apply

Theorem 3.1. The fact that disc(A) ≤
√

r(A) follows from the John Ellipsoid

Theorem [19], though to see that it might be necessary to first understand the

relation between the discrepancy of a sign matrix and the factorization norm γ2.

The details can be found in [29, 30].

3.3. Approximate rank and sign rank. As mentioned, it is a simple exer-

cise to prove p(A) ≤ 2r(A). In the last section we saw that this can be improved

to p(A) = 2Õ(
√

r(A)), but this is still very far from what the log-rank conjecture

asserts. In this section we show that the trivial upper bound can be improved

in a different way, replacing rank with weaker (and even much weaker) variants

of it.

3.3.1. Approximate rank. Let A be a sign matrix and 0 < ǫ < 1 a real number.

The ǫ-approximate rank of A is defined as

(6) rǫ(A) := min
B:‖A−B‖∞≤ǫ

r(B).

The approximate rank of a matrix can be significantly smaller than its rank.

The n× n identity matrix In is a good example where rank is full but approx-

imate rank (for constant ǫ) is logarithmic. The upper bound on rǫ(In) follows
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from the Johnson–Lindenstrauss lemma [20], and a lower bound is given in [5].

More details and further examples can be found in [26], where it is shown that

approximate rank behaves much more like the γ2 factorization norm than like

rank.

Despite the big difference between rank and approximate rank, we have

Lemma 3.10: For every sign matrix A and 0 < ǫ < 1 it holds that

p(A) = 2O(rǫ(A)).

Proof. The proof works via the notion of a cover number of an m × n sign

matrix A. Denoted Nǫ(A), it is the cover number of the convex hull of the

columns of A. That is, it is the minimal size of a subset S ⊂ Rm such that for

every vector v in the convex hull of the columns of A there is a vector u ∈ S

satisfying ‖v − u‖∞ ≤ ǫ.

It is proved in [6] that Nǫ(A) ≤ 2O(rǫ(A)) (this inequality holds for every

matrix whose entries are bounded by 1 in absolute value). It follows straight

from the definitions that the number of distinct columns of A is bounded from

above by Nǫ(A), for every 0 < ǫ < 1. It is left to observe that p(A) is at most

the number of distinct columns of A.

Note that the proof of Lemma 3.10 gives in fact that the number of distinct

rows of a sign matrix A is at most 2O(rǫ(A)), which is a stronger bound, as the

number of distinct rows can be much larger than p(A). In fact, for the number

of distinct rows, the bound in terms of rank can be improved to O(2r(A)/2), but

no further; see [23] for details. Hence the bound in Lemma 3.10 in terms of

approximate rank is a nice improvement.

3.3.2. Sign rank. Rank can be further replaced by sign-rank in terms of its

relation with the maximum size of a rank-1 submatrix. The sign-rank of a sign

matrix A is

r∞(A) := min
B:ai,jbi,j>0

r(B).

Sign-rank is an even weaker version of rank than approximate rank, however,

it still holds that:

Lemma 3.11: For every m× n sign matrix A, α(A) = O(r∞(A)).
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We use the following definition and result from [36]. For a set of points P

in Rd and a hyperplane H , we say that H crosses P if not all of the points

in P lie in the same half-space defined by H .

Theorem 3.12 (Matoušek’s Partition Theorem): Let P be a subset ofm points

in Rd, and let t be an integer. Then P can be partitioned into t subsets Pi

each containing Θ(m/t) points from P such that every hyperplane crosses at

most O(t1−1/d) subsets Pi.

Proof of Lemma 3.11. Let d = r∞(A), and let {xi}mi=1, {yj}nj=1 ⊂ Rd be row

vectors satisfying ai,j(xiy
t
j) > 0. Apply Theorem 3.12 with P = {xi}mi=1

and t = 2O(d). We get a partition of {xi}mi=1 into t subsets Pi each contain-

ing Θ(m/t) points such that the sign of the inner product of every yj is constant

on at least one of the subsets. This gives a monochromatic submatrix of A of

size at least mn/2O(d). Since the sign-rank of any submatrix of A is at most

the sign-rank of A, the lemma follows.

4. Known gaps

In this section we review some of the best known separations between communi-

cation complexity and log-rank. For this section it will often be more convenient

to think in terms of functions rather than matrices. For the separations we dis-

cuss a key role is played by the composition of functions and, while this can

be described purely in matrix terms, it is cleaner to state using a functional

notation.

We call a function of the form F : {0, 1}n × {0, 1}m → {0, 1} a commu-

nication function as it describes the communication problem where Alice is

given x ∈ {0, 1}n, Bob is given y ∈ {0, 1}m and their goal is to communicate

as little as possible until they both know F (x, y). From a communication func-

tion F we can define a matrix A where Ax,y = F (x, y). This is known as the

communication matrix of F .

4.1. Nisan, Wigderson and Kushilevitz. In this section we go over the con-

struction by Nisan and Wigderson [37] of a boolean matrix A for

which cc(A) = Ω(loglog2 3 r(A)), implying that the constant c in the log-rank

conjecture must be at least log2 3 ≈ 1.58, and its improvement by Kushilevitz

to show that c ≥ log3 6 = 1.63 . . ..
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This construction, and in fact all the separations between rank measures

and communication complexity measures we will look at, is based on a com-

posed function. A composed function is a way to transform a function from the

“query” setting, where separations are usually easier to prove, to the “commu-

nication” or matrix setting.

Say that we have a function f : {0, 1}n → {0, 1}. On input x the goal of a

deterministic query algorithm for f is to output f(x), but the algorithm can

only access x by making queries of the form: what is xi? These questions can be

made in an adaptive fashion, i.e., the choice of what to query can depend on the

answer to previous queries. LetD(f) be the minimum number of queries needed

for a deterministic algorithm to correctly output f(x) for all x ∈ {0, 1}n. As an
example, consider the function ORn : {0, 1}n → {0, 1} which evaluates to 0 if

and only if the input is the all-zero string. It is easy to see that D(ORn) = n

by an adversary argument. For a query “what is xi?” the adversary decides

how to answer. In the case of the ORn function the behavior of the adversary

is very simple: for any query the algorithm makes, the adversary answers that

the corresponding bit of the input is 0. After n − 1 queries there is still some

position of the input x which has not been queried. By deciding whether or

not this last input bit is 0 or 1 the adversary determines whether ORn(x) = 0

or ORn(x) = 1. Thus the algorithm cannot correctly answer after n− 1 queries,

showing D(ORn) ≥ n. Of course, D(ORn) ≤ n because with n queries the

algorithm can learn the entire input. The property that makes the lower bound

argument work is that the OR function has sensitivity n on the input 0n.

Flipping any bit of 0n changes the output value under ORn. Note that the ad-

versary only constructs inputs that have at most one 1, thus the same argument

also works to show that the UNIQUE OR function, which is only defined on

inputs of Hamming weight at most 1, has deterministic query complexity n.

We can transform the function f from the “query world” into the “commu-

nication world” by composing it with a “gadget.” Perhaps the simplest gadget

is the function AND : {0, 1}× {0, 1} → {0, 1} where AND(x, y) = 1 if and only

if x = y = 1. If we have a “query” function f : {0, 1}n → {0, 1} then we can

create a “communication” function F : {0, 1}n × {0, 1}n → {0, 1} as

F (x, y) = f(AND(x1, y1), . . . ,AND(xn, yn)).

We denote this function as F = f ◦ANDn.
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As an example, when f = OR3 then the communication matrix of OR3◦AND3

looks as follows:

000 001 010 011 100 101 110 111

000 0 0 0 0 0 0 0 0

001 0 1 0 1 0 1 0 1

010 0 0 1 1 0 0 1 1

011 0 1 1 1 0 1 1 1

100 0 0 0 0 1 1 1 1

101 0 1 0 1 1 1 1 1

110 0 0 1 1 1 1 1 1

111 0 1 1 1 1 1 1 1

It is not hard to see that the rank of this matrix is 7. The function ORn◦ANDn

is known as the SET INTERSECTION function as it evaluates to 1 if and only

if the inputs x, y share a common 1 in some position. This is one of the most

important functions in communication complexity.

Nisan and Wigderson make one change to this matrix. If we change (8, 8)

entry from 1 to 0 then the rank of the matrix becomes 6. This again corresponds

to a composed function, NAE◦AND3 where NAE is the “not-all-equal” function.

This is identical to OR3 except that NAE(111) = 0. Thus NAE evaluates to 1

exactly when not all the input bits are equal. For the separating example

Nisan and Wigderson compose NAE with itself k times to obtain a function

NAEk : {0, 1}3k → {0, 1}, then look at the function NAEk ◦ AND3k . Let’s

see why this function gives a separation between log-rank and communication

complexity.

The NAE function still has sensitivity 3 on the input 000. This property

carries over when we compose NAE with itself—NAEk has sensitivity 3k on

the input 03
k

. This means that NAEk ◦AND3k is an instance of the UNIQUE

SET INTERSECTION— whenever x and y intersect in at most one position

NAEk ◦AND3k has the same output as SET INTERSECTION. It is known that

UNIQUE SET INTERSECTION on m bit input has deterministic communica-

tion complexity Ω(m) [21, 41]. This shows the communication complexity lower

bound Ω(3k) on NAEk ◦AND3k .

The key to the upper bound on the rank of the communication matrix

of NAEk◦AND3k is to look at the polynomial representation of NAE. The matrix

rank of f◦ANDn is closely related to the number of monomials in the polynomial



26 T. AND A. SHRAIBMAN Isr. J. Math.

representation of f . Suppose that f(x) =
∑

S⊆[n] αSxS , where xS =
∏

i∈S xi.

Then

f ◦ANDn(x, y) =
∑

S⊆[n]

αSxSyS

immediately gives a factorization of the communication matrix of f ◦ ANDn

that witnesses the rank is at most the number of monomials in f .

The not-all-equal function has polynomial degree 2:

NAE(x1x2x3) = 1− x1x2 − x1x3 − x2x3.

Composing this polynomial with itself k times gives a polynomial representa-

tion of NAEk, showing that deg(NAEk) ≤ 2k. Thus the number of monomials

in NAEk is at most
(

3k

2k

)

≤ 3k2
k

. Therefore, the logarithm of the rank of

the communication matrix of NAEk ◦ AND3k is O(k2k). This gives an exam-

ple of a matrix with communication complexity Ω(3k) and logarithm of the

rank O(k2k), showing that the exponent in the log-rank conjecture must be at

least log2 3 = 1.58 . . ..

The essence of the Nisan–Wigderson construction is finding a separation be-

tween the polynomial degree of f and the sensitivity of f on input 0n. By

the connection to the UNIQUE SET INTERSECTION problem, the sensitiv-

ity of f on 0n will always be a lower bound on the communication complex-

ity of f ◦ ANDn. And
(

n
deg(f)

)

will always be an upper bound on the rank

of f ◦ANDn.

Kushilevitz improved on the Nisan–Wigderson example by coming up with

a function f on 6 bits that has sensitivity 6 on input 06 and has polynomial

degree 3. This example shows that the exponent in the log-rank conjecture

must be at least log3 6 = 1.63 . . .

It remains an open problem how large the separation between polynomial

degree and sensitivity can be. It is known that s(f) ≤ deg(f)2 and the ex-

ample of Kushilevitz shows the existence of an infinite family of functions f

with deg(f)log3 6 ≤ s(f). As far as we currently know, the Nisan–Wigderson

framework could be instantiated to show that the exponent in the log-rank con-

jecture must be as large as 2. Such a separation was achieved by Göös, Pitassi

and Watson [17] by very different means, as we see in the next section.

Question 4.1: Does there exist a function f whose sensitivity is quadratically

larger than its degree?
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4.2. Göös, Pitassi and Watson. Göös, Pitassi and Watson (GPW) [17] show

that the exponent in the log-rank conjecture must be at least 2 by different

means than those discussed in Section 4.1. Specifically, they give an example

of a matrix A with cc(A) = Ω̃(log2 p(A))). This separation is tight, up to

logarithmic factors, in light of Eq. (1).

The GPW separation again begins by showing a separation in the query set-

ting and then “lifting” this separation to the communication setting. This time,

instead of working with the AND function gadget, GPW use the index func-

tion INDEXm as the gadget. This is defined as INDEXm : [m]×{0, 1}m→{0, 1},
where INDEXm(i, x) = xi. Theorem 3 of [17] shows a very powerful lifting the-

orem. For any f : {0, 1}n → {0, 1}, by taking m = n20 this theorem shows

that cc(f ◦ gn) = D(f) · Θ(logn). Recall that D(f) is the deterministic query

complexity of f . This theorem is powerful because it is generally much easier

to show a lower bound on query complexity rather than communication com-

plexity. Similar to what we saw in Section 4.1 the problem now becomes to

construct a query function that has a separation between its polynomial degree

and deterministic query complexity (upper bounds on degree similarly lift to

upper bounds on rank with the INDEXm gadget).

In the query setting, it is generally easier to separate complexity measures on

partial functions, functions whose domain is not the whole boolean cube {0, 1}n,
rather than total functions. For example, the polynomial x1 + · · · + xn has

degree 1. When restricted to inputs that have at most one 1, this polynomial

faithfully represents the UNIQUE OR promise problem. As we discussed in

Section 4.1 the deterministic query complexity of UNIQUE OR is n. Thus we

have a separation of 1 vs. n between polynomial degree and deterministic query

complexity for the partial function UNIQUE OR. A remarkable insight of GPW

is a technique for constructing separations by making partial functions total.

This insight has been highly influential in later work, leading to the falsification

of the Saks–Wigderson conjecture [9] and the largest known separations between

randomized and quantum query complexities [1].

To explain the GPW function, we start with a partial function slightly more

involved than UNIQUE OR. Now think of the input variables xi,j laid out in

an n-by-n matrix. The function now is UNIQUE OR of AND: we want to

determine if there is a column where all variables are 1, and are promised that

there is at most one such column. There is a degree n polynomial for this partial
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function:
∑

i

∏

j xi,j . On the other hand the deterministic query complexity of

this function is Ω(n2): an adversary can always answer a query 1 unless it

is the last unknown variable in a column, in which case it answers 0. Now we

have a quadratic separation between polynomial degree and deterministic query

complexity on a partial function.

The advantage of the UNIQUE OR of AND function, and a key insight of

GPW, is that it can be made total without changing the asymptotic separa-

tion. This is done via the use of pointers. Each cell of the n-by-n matrix is

now additionally given another piece of data, which is a pointer, possibly null

(denoted ⊥), to another cell of the matrix.

The function is defined to evaluate to 1 if and only if:

• There is a unique all-1 column.

• In the all-1 column there is a unique cell with a non-null pointer.

• Following this pointer starts a chain of pointers that visits a 0-cell of

every other column.

Adding the verification of a unique all-1 column makes this a total function.

There is still a simple adversary argument to show that this function has query

complexity Ω(n2). The adversary always answers (1,⊥) unless a query is the

last unqueried cell in a column, a “critical query.” On the first critical query the

adversary answers (0,⊥). On subsequent critical queries the adversary answers

with 0 and a pointer to the cell where the previous critical query was made.

We can construct a O(n) degree polynomial which encodes that a column

is all-1 and starts a pointer chain to zeros in all other columns. As there can

be at most one such column, we can sum these polynomials over all columns

to give a degree O(n) polynomial for the GPW function overall. Compos-

ing the GPW query function with the INDEX gadget gives a communication

function F whose deterministic communication complexity is Ω̃(n2) while the

communication matrix A of F satisfies log p(A) = Õ(n).

5. Variations, including false ones

In this section we look at variations around the log-rank conjecture. By replac-

ing rank with other complexity measures, like non-negative rank or approximate

rank, we can obtain statements that are known to be true or false. We also ex-

amine the hypotheses of the log-rank conjecture, in particular the assumption

that the matrix is boolean.
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5.1. Integer matrices as opposed to boolean matrices. The defini-

tion of partition number is easily extended to non-negative integer matrices.

For A ∈ Nm×n we define p(A) to be the smallest p such that there exist

boolean matrices {Bi}pi=1 and positive integers {zi}pi=1 such that r(Bi) = 1

and A =
∑p

i=1 ziBi.

In the introduction we mentioned that the n × n matrix A with ai,j = i+ j

has rank 2 but partition number n because no two diagonal entries of A can

belong to the same part of the partition. A drawback to this example is that

the entries of the matrix are rather large, as large as 2n.

We can achieve a separation that is almost as good with an N × N matrix

whose entries are at most logN . Define an N × N matrix A where N = 2n

and rows and columns are labeled by n-bit strings. For x, y ∈ {0, 1}n define

ax,y = 〈x, y〉, where 〈·, ·〉 is the dot product. This explicit factorization by n-

dimensional vectors shows r(A) ≤ n. Further, when restricted to entries (x, y)

where 〈x, y〉 ≤ 1 the matrix A agrees with the UNIQUE SET INTERSECTION

problem, which shows that log p(A) = Ω(n).

Another source of interesting examples of non-negative matrices that have

small rank, large partition numbers, and whose entries are not too large comes

from looking at slack matrices of polytopes. A polytope P ⊆ Rd has two

natural representations. It can be represented as the convex hull of its ver-

tices P = conv(v1, . . . , vt} or it can be represented by its defining inequalities

P = {x ∈ Rd : Ax ≤ b}, where the matrix A has f rows. The slack matrix M

of P is a t-by-f matrix with rows labeled by vertices and columns labeled by

defining inequalities where mi,j = bj −Ajvi is the slack of the ith vertex with

respect to the jth inequality. In particular, the entries of a slack matrix are

non-negative. This definition also shows that the rank of a slack matrix is at

most d+ 1 as, for V the matrix whose ith row is vTi , it can be written as

M =
[

1t×1 V
]

[

bT

−AT

]

,

where 1t×1 is a column vector of dimension t consisting of all ones.

Slack matrices can provide interesting examples of low rank matrices. We

will be interested in the slack matrix of the correlation polytope. The vertices

of the correlation polytope are aaT for all a ∈ {0, 1}n. For any a, b ∈ {0, 1}n



30 T. AND A. SHRAIBMAN Isr. J. Math.

we of course have (1− aT b)2 ≥ 0. We can rewrite this as

1− 2diag(a)bbT + 〈aaT , bbT 〉.

This means that every vertex bbT of the correlation polytope satisfies the in-

equality 〈2diag(a)−aaT , bbT 〉 ≤ 1. Hence the 2n-by-2n matrixma,b = (1−aT b)2

is a submatrix of the slack matrix of the correlation polytope. This matrix has

rank at most n2 + 1 and all entries have magnitude at most (n − 1)2. This

submatrix is again an instance of (the negation of) UNIQUE SET INTERSEC-

TION, thus it satisfies log p(M) = Ω(n). See [15] for more details about this

example, where it is used to show an exponential lower bound on the extension

complexity of the cut polytope.

5.2. The log-approximate-rank conjecture. By analogy with the log-

rank conjecture, in 2009 we proposed the log approximate rank conjecture [27].

This conjecture replaces deterministic communication complexity with (private

coin) randomized communication complexity, and rank with approximate rank.

We let rcc1/3(A) denote the minimum cost of a private coin randomized com-

munication protocol that correctly computes A. As the logarithm of the rank is

a lower bound on deterministic communication complexity, the logarithm of the

approximate rank is a lower bound on randomized communication complexity

(recall the definition of approximate rank from Eq. (6)). Krause [24] showed

that rcc1/3(A) ≥ log r1/3(A). The log approximate rank conjecture is that there

is a universal constant c such that rcc1/3(A) ≤ log(r1/3(A))
c + 2. This conjec-

ture was recently shown to be false by Chattopadhyay, Mande and Sherif (CMS)

[12]. Shortly thereafter, an even weaker version of the log-approximate-rank

conjecture with randomized communication complexity replaced by quantum

communication complexity was also refuted by two groups, Anshu, Boddu and

Touchette [10], and Sinha and de Wolf [46].

As in the Nisan–Wigderson and Göös, Pitassi and Watson constructions, the

counterexample is again based on achieving a separation in the query world and

lifting this separation to communication complexity. The analog of randomized

communication complexity in the query setting is randomized query complexity,

which we denote by R1/3(f). The analog of approximate rank in the query

setting is the minimum number of monomials in a polynomial approximating f .

To achieve a super-polynomial separation between randomized communica-

tion complexity and the logarithm of approximate rank we have to be careful



Vol. TBD, XXXX AROUND THE LOG-RANK CONJECTURE 31

about which kind of gadget g we choose. For a boolean function f :{0,1}n→{0, 1}
let deg1/3(f) be the approximate degree of f , that is the minimum degree of

a real-valued function h such that |f(x)− h(x)| ≤ 1/3 for all x ∈ {0, 1}n. Work

by Sherstov on the pattern matrix method [42] and Shi and Zhu [43] shows for

a variety of gadgets g that log r1/3(f ◦ gn) = Ω(deg1/3(f)). One statement of

this form by Lee and Zhang [28] says the following. Say that a row (column)

of a sign matrix A is balanced if the sum of the entries in the row (column)

is zero. Say that the sign matrix A is strongly balanced if every row and

column is balanced. For g : X × Y → {0, 1} let Mg be a sign matrix with

Mg(x, y) = (−1)g(x,y). For any function f , if g is such that Mg is strongly

balanced it follows that

(7) log r1/3(f ◦ gn) = Ω
(

deg1/3(f)

√

|X ||Y |
‖Mg‖

)

.

We further know that R1/3(f) ≤ deg1/3(f)
4 [2], so we cannot have a superpoly-

nomial separation between the log approximate rank and randomized commu-

nication complexity of a function of the form f ◦gn when g is strongly balanced

and has
√

|X ||Y |/‖Mg‖ > 1.

A way around this is to use as the inner gadget the XOR function g(x, y)=x⊕y

where x, y ∈ {0, 1}. While this is a strongly balanced function, in this case Mg

has rank one and therefore
√

|X ||Y |/‖Mg‖ = 1, so Eq. 7 gives nothing. Indeed,

even though PARITY has polynomial degree n, the function PARITYn ◦XORn

can be computed by a 2-bit communication protocol. When the gadget is the

XOR function, the analogs of approximate rank and randomized communication

complexity in the query world change. The rank of f ◦ XORn is exactly ‖f̂‖0,
the number of nonzero Fourier coefficients of f , or in other words the num-

ber of monomials in a polynomial representing f as a function over the do-

main {−1,+1}n. Likewise, the approximate rank of f ◦ XORn is determined

by ‖f̂‖0,1/3 = minh{‖ĥ‖0 : ‖f − h‖∞ ≤ 1/3}. Instead of the normal random-

ized query complexity, the randomized communication complexity of f ◦XORn

is connected to a more powerful query model called a randomized parity de-

cision tree. In this model, the algorithm can query the parity of any subset

of the input bits. We use R⊕(f) to denote the minimum cost of a random-

ized parity decision tree that computes f with error at most 1/3. We can see

that rcc1/3(f ◦XORn) = O(R⊕(f)) because PARITYk◦XORk can be computed

with constant communication.
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CMS consider the case of the SINK function SINKm : {0, 1}(
m
2 ) → {0, 1}.

The input x ∈ {0, 1}(
m
2 ) is interpreted as a directed graph on m vertices. In

fact, x is interpreted as being a tournament: for every pair of vertices vi, vj

there is either an edge directed from vi to vj or an edge directed from vj to

vi, but not both. Indexing the bits of the input as xi,j for i < j then xi,j = 1

means there is an edge from vi to vj in the graph, and xi,j = 0 means there is

an edge from vj to vi in the graph. In the query world, CMS show the following

separation:

(1) ‖ŜINKm‖0,1/3 = O(m4).

(2) R⊕(SINKm) = Ω(m).

Item (1) directly implies that r1/3(SINKm ◦ XOR(
m
2 )) = O(m4). While we

do not have a general theorem lifting randomized parity decision tree

lower bounds to communication lower bounds for XOR functions, for the par-

ticular case of the SINK function, CMS are able to lift item (2) to show

rcc1/3(SINK ◦ XOR(
m
2 )) = Ω(m). Thus this gives an example of an exponen-

tial separation between the logarithm of the approximate rank and randomized

communication complexity.

5.3. Non-negative rank. There is a variation of the log-rank conjecture that

we know to be true—if rank is replaced by the non-negative rank. The non-

negative rank of an m × n non-negative matrix A, denoted r+(A), is the min-

imum r such that there is an m× r non-negative matrix X and an n× r non-

negative matrix Y such that A = XY t. We can see that χ(A) ≤ r+(A). Indeed,

say r+(A) = r and take a non-negative factorization A = XY t where X and Y

have r columns. From X,Y we define r boolean rank-one matrices B1, . . . , Br

where Bi is is 1 wherever XiY
t
i is positive and is 0 otherwise. Since all entries

of X,Y are non-negative there can be no cancelations, and A must be 1 in any

entry where XiY
t
i is positive. Moreover, as A = XY t it must be the case that

for every entry where A is one, there is some Bi that is 1 there. Thus B1, . . . , Br

form a covering of the ones of A and χ(A) ≤ r+(A). Therefore by Lemma 5.1

below we have

log p(A) ≤ (log r+(A) + 2)(log r(A) + 1).

Lemma 5.1 (Lovász and Saks [34, Theorem 2.8]): For every boolean matrix A

it holds that

log p(A) ≤ (logχ(A) + 2)(log r(A) + 1).
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6. Conclusion

The log-rank conjecture is notorious for good reasons:

• It is natural and elementary, as it asks whether the basic measure in

communication complexity, an information theoretic model, is charac-

terized by the first proved lower bound, matrix rank. Nevertheless after

more than 50 years of research, we are not even close to resolving this

question.

• It has profound applications, since matrix rank has many properties we

do not know whether communication complexity possesses:

– It can be computed in polynomial time.

– It has two dual equivalent characterizations.

– The rank of a tensor product is equal to the product of the ranks.

– For every matrix A, with r = r(A), there is an r × r submatrix of

rank r.

• Generalizing the log-rank conjecture a bit, for example by considering

any integer matrix, results in a false statement. And making the state-

ment stronger, e.g., by replacing rank by binary or positive rank, results

in a (relatively) easy theorem. For this reason, and others, it seems to

carve a thin line.

• Restricting the question to a small subset of matrices, e.g., matrices A

such that

Ax,y = f(x⊕ y)

for some function f{0, 1}n → {0, 1}, is still a hard and interesting ques-

tion. Even restricting and asking for the minimum rank of a triangle-free

graph, still seems quite challenging.

• To improve the upper bound χ(A) ≤ 2Õ(
√

r(A)) one needs to relate

matrix rank, a global property, to the maximal size of a rank-one matrix,

a local property. These kind of relations are known to be challenging.

• To improve the known gap between rank and χ, one needs to construct a

boolean matrix A with low rank that does not contain large submatrices

of rank 1. In other words, it requires finding strong two-source extrac-

tors (alternatively, explicit bounds on bipartite Ramsey numbers), with

the additional condition that the rank of the matrix is low. The problem
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of finding strong two-source extractors (or bounding bipartite Ramsey

numbers) is hard as it is, and has found good solutions only in recent

years; adding the requirement that the overall rank is low makes the

problem even harder.

• If we instead deviate from this path, and attempt a non-explicit con-

struction we would have to face the fact that we have no way of sampling

low-rank boolean matrices. There is no random model for this set of

matrices.

Even though the log-rank conjecture seems far from our reach at the mo-

ment, we did learn quite a bit from the reseach so far. For example, evidence is

mounting via the Nisan and Wigderson bound and related work, e.g., [34, 16],

that when rank is small things are strongly structured. When rank is small,

many complexity measures that are usually very different from each other, be-

come close. This includes: discrepancy, corruption, the maximal size of a rank-1

submatrix, deterministic communication complexity, non-deterministic commu-

nication complexity, randomized communication complexity, and many more.

This even includes quantum communication complexity measures and a mea-

sure that combines the power of randomization and non-determinism. Perhaps

the reason for this structure is that the rank of a boolean matrix can only be

made small by repeating a row or a column, more or less. For a random matrix

this is a commonly accepted conjecture, and it is nearly resolved [31]. If true,

this can explain the strong structure implied by small rank, and it will also

imply the log-rank conjecture. Or, it might be the case that there exists some

extraordinary way to span many boolean vectors from some small set of vectors,

that allow to refute the log-rank conjecture.

Either way, the log-rank conjecture highlights a hole in our understanding.

It points to an intersection between linear algebra and combinatorics where

our usual tools do not work. When restricted to boolean matrices, we do not

understand rank well enough, and even more so restricted versions of rank,

or quantities related to the size of submatrices with small rank. There are

various threads to pool here, and different approaches one can take for the

log-rank conjecture, each interesting in its own right. We hope that in this

survey we managed to showcase some of these fascinating aspects of the log-

rank conjecture.
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