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Revisiting EmbodiedQA: A Simple
Baseline and Beyond

Yu Wu

Abstract—In Embodied Question Answering (EmbodiedQA),
an agent interacts with an environment to gather necessary
information for answering user questions. Existing works have
laid a solid foundation towards solving this interesting problem.
But the current performance, especially in navigation, suggests
that EmbodiedQA might be too challenging for the contemporary
approaches. In this paper, we empirically study this problem
and introduce 1) a simple yet effective baseline that achieves
promising performance; 2) an easier and practical setting for
EmbodiedQA where an agent has a chance to adapt the trained
model to a new environment before it actually answers users
questions. In this new setting, we randomly place a few objects in
new environments, and upgrade the agent policy by a distillation
network to retain the generalization ability from the trained
model. On the EmbodiedQA v1 benchmark, under the standard
setting, our simple baseline achieves very competitive results to
the-state-of-the-art; in the new setting, we found the introduced
small change in settings yields a notable gain in navigation.

Index Terms—Embodied question answering, vision and
language, visual question answering.

I. INTRODUCTION

LONG-STANDING goal of artificial intelligence is to
develop agents that can perceive and interact with the
environment and communicate with humans in natural lan-
guage. A representative research area is studying a goal-driven
agent that can communicate with humans (language), per-
ceive the environment (vision), and explore the space (taking
actions). This paper focuses on a kind of such problem called
Embodied Question Answering (EmbodiedQA) [1], a sub-field
derived from Visual Question Answering (VQA), where users
could ask an agent questions, and to answer these questions,
the agent needs to perform actions to navigate the environment
and collect evidence. A key difference to related problems,
such as visual navigation [2]-[4], is that the agent is only
given the first-person view and has no access to the global
map of the environment nor the room/object layout in the
environment. The example in Fig. 1 illustrates this challenging
setting where the agent needs to answer questions about an
object at a random location in the environment.
The pilot works on EmbodiedQA in the literature [1], [5],
[6] have laid a solid foundation towards solving this interesting
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Fig. 1. An illustration of the EmbodiedQA task under the standard evaluation
setting (Left) and the calibration setting (Right). In the EmbodiedQA task,
the agent should navigate to explore the environment and collect visual
evidence to answer the asked question. In the figure, the asked question
is shown on the top. To answer this question, the agent is given only the
first-person view and is expected to move closer to the car in an unseen
environment. Under the standard setting, it is very difficult for an agent to
navigate as it has never seen the environment before. In the new calibration
setting, it is easier for the agent to choose the right direction as its model has
been adapted to the new environment via the calibration.

problem. These works have achieved promising results in
terms of the final Question Answering (QA) accuracy. Despite
the promising progress, EmbodiedQA remains to be very
challenging to solve, and perhaps too challenging for the
current approaches. A recent paper by Anand et al [7] reported
that a blind agent, which is designed as a simple CNN
Bag-of-words model to completely ignore the environment
and visual information, can achieve the state-of-the-art QA
performance. Besides fixing the statistical irregularities in the
EmbodiedQA dataset as suggested in [7], on the other hand,
Anand ef al’s interesting finding inspires us to take a step back
and empirically revisit the EmbodiedQA problem.

First, Anand et al’s results suggest using the QA accuracy
as the only evaluation metric is not sufficient. The evaluation
metric on grounding seems, perhaps, equally important as the
final QA accuracy. We can use the navigation distance in
EmbodiedQA as the grounding metric, which measures the
change (in meters) during the navigation towards the target
object. This idea agrees with contemporary works in VQA,
where a system is designed to answer a question based on
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correct “grounding snippets” either spatially (e.g. in [8]) or
temporally (e.g. in [9]). Under the new criteria, a blind agent
in [7], though enjoys a decent QA accuracy, still suffers from
the random navigation accuracy.

Second, existing EmbodiedQA systems [1], [5], [6] can
be generally divided into a navigation module and a QA
module. These two modules are first individually optimized
and then jointly trained by Reinforcement Learning (RL). See
Section II. This is different from the simple baseline in [7] as
well as many other VQA models, where the model is often
trained end-to-end by Stochastic Gradient Descent (SGD).
This observation inspires us to seek the answer to the following
question fo what extend a true simple EmbodiedQA baseline
is able to achieve in comparison to the state-of-the-art? To
this end, we introduce a new simple yet effective Embod-
iedQA baseline. Different from existing RL-based approaches,
it employs a simple policy model for navigation and a standard
LSTM model for question answering. By virtue of this simple
design, our network can be jointly trained by SGD in which
both two modules can be optimized efficiently. Empirically,
we found this simple baseline achieves competitive results on
the EmbodiedQA benchmark both in terms of the final QA
and the navigation accuracy. A notable benefit of our simple
baseline is that it is simple to integrate with a wide variety of
VQA models, most of which are trained by SGD as opposed
to RL-based approaches.

Finally, our empirical results indicate that the QA bottleneck
stems from the worse navigation in the unseen environment,
i.e. an agent is hardly able to reach a point to observe the target
object in a new environment, let alone answer the question.
It suggests that the EmbodiedQA setting may be too chal-
lenging for the contemporary approaches. Recall our goal is
to understand the capability of simple EmbodiedQA methods.
As a result, as opposed to developing more advanced navi-
gation models, this paper introduces a slightly easier setting
in which users are allowed to ask the agent a few rhetorical
questions whenever it enters into a new environment. No extra
supervision is needed since users already know and simply do
not care about the answers to these questions. Our real goal is
to warm up the agent in the new environment. It is a practical
setting as the adaption can be conveniently finished via the
same QA interface without changing the agent’s pipeline.

To this end, we randomly place some reserved objects,
called “markers”, in a new environment and ask the agent
questions about the colors of these markers in order to adapt
the already trained model to the new environment. We call
it calibration setting as users can adapt the agent to a new
environment in a similar way as calibrating a new camera.
We found that this small change in setting considerably
reduces the learning difficulty and yields notable gains in
navigation. This setting shares a high-level similarity with
visual navigation. But note in EmbodiedQA, we are not
allowed to access to the environment structures (i.e., rooms,
objects layout and global sketch map).

We empirically compare our method to the state-of-the-art
approaches on the EmbodiedQA vl benchmark. Under the
standard setting, we show that our simple baseline achieves
very competitive results in terms of both QA and navigation
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accuracy. To the best of our knowledge, this is one of the
first EmbodiedQA methods that is jointly optimized by SGD
instead of Reinforcement Learning. In the new “calibration”
setting, the results validate this small change in setting leads
to a significant gain in navigation when the agent is further
(30 and 50 action steps) away from the target. In summary,
this paper presents an empirical study on the recent topic of
EmbodiedQA. Our main observations can be summarized as:

« We propose a simple baseline method that can be jointly
optimized without Reinforcement Learning, which is
competitive to the state-of-the-art EmbodiedQA methods.

« We introduce an easier and practical setting for Embod-
iedQA. We found this small change in setting yields a
notable gain in navigation especially when the agent is
further away from the target.

o The marker generation and model adaptation may greatly
influence the agent’s performance. We found randomly
placing a few marks and distill the knowledge from the
trained model performs reasonably well in practice.

II. RELATED WORK

In the EmbodiedQA task, vision, language, and naviga-
tion action are combined together in building an intelligent
goal-driven agent. It origins from two widely studied tasks,
the visual navigation task and the visual question answering
task. We first review related works for these two tasks and
then extend the discussion to the EmbodiedQA task.

A. Visual Navigation

The problem of navigating in an environment based on
visual input has long been studied in computer vision and
robotics [2]. Classical approaches [3] constructed a 3D model
of the environment based on visual observations, and then
planed and selected paths based on this map. Some early
approaches [10], [11] required a prior global map or building
an environment map on-the-fly.

Recently, deep reinforcement learning was developed and
successfully applied to the visual navigation task. Some
works [12], [13] utilized auxiliary tasks during training
to improve navigation performance. Others either took
the recurrent neural network (RNN) to represent the
memory [4], [14]-[16] or predicted navigational actions
directly from visual observations [8], [17], [18].

In the visual language navigation task, the language inputs
are instructions to teach the agent how to move. However,
in EmbodiedQA, the language input is a question about a
target object, without any instructions on how to reach it.
The visual navigation is only an intermediate step towards the
end goal of question answering. Another difference is that the
EmbodiedQA agent is only given the first-person view and
has no access to the global map of the environment nor the
room/object layout in the environment. We study this problem
in the context of EmbodiedQA.

B. Visual Question Answering

Recently, multimedia analysis [19], [20] has attracted a lot
of research attention. Among them, visual question answer-
ing (VQA) is an interesting Al task that utilizes the input of
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both vision and language. Many VQA approaches [21]-[25]
trained the model from the encoded image features and text
features via the end-to-end network optimized by SGD. A key
research question in VQA is studying an effective multimodal
module to combine the image and text for answer inference.
Recent studies show the attention-based model [26]-[31] is a
promising direction for this purpose. Some recent works [9],
[32]-[34] introduce visual grounding to the VQA models to
avoid the language priors in training data. It is reasonable to
expect VQA models that are answering questions for the “right
reasons”.

Existing VQA problems mainly focus on the static vision
language dataset [21], [33], [35]-[37], where the agent answers
questions based on a passive vision input, i.e., without
the ability to interact with the environment. In comparison,
EmbodiedQA allows an agent to explore the space (take
actions) before answering questions. It is worth emphasizing
that since this paper is studying the capability of a simple
method for EmbodiedQA, we use the standard VQA model
for answer inference. The proposed model is compatible with
advanced VQA models, and it is simple to incorporate existing
VQA models.

C. Embodied Question Answering

Embodied Question Answering (EmbodiedQA) is a QA
task that requires an agent to interact with a dynamic visual
environment. This task is also relevant to vision-language
grounding [38], [39]. A common framework is to divide the
task into two sub-tasks: an intermediate navigation task and
a downstream QA task. The navigation module is essential
since it is a prerequisite to seeing an object before answering
questions about it. Previous works [1], [6] focused on the
navigation and used the same QA model for comparison.

For example, Das er al [1] proposed Planner-Controller
Navigation Module (PACMAN), which is a hierarchical struc-
ture for the navigation module, with a planner to select
actions (directions) and a controller that decide how far
to move following this action. The navigation module and
visual question answering model are first trained individually
and then jointly trained by REINFORCE [40]. Similarly,
Gordon et al [41] proposed the Hierarchical Interactive Mem-
ory Network, consisting of a hierarchy of controllers that
operate at multiple levels of temporal abstraction and a
rich semantic memory that aids in navigation, interaction,
and question answering. Das et al [6] further improved the
PACMAN model by Neural Modular Control (NMC) where
the higher-level master policy proposes semantic subgoals to
be executed by sub-policies. Different from their method,
we design a training pipeline to jointly optimizes navigation
and QA modules without Reinforcement Learning, which
seems to be more effective.

EmbodiedQA may be too challenging to solve by current
approaches. Previous works [1], [6] achieve poor navigation
performance, especially for the medium and long distance
questions. This is because the agent is hardly able to see the
target object in a new environment before it starts answering
the question. Fortunately, a recent study from Yu et al [5]
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proposed a multi-target EmbodiedQA task to reduce this
difficulty. In this setting, questions have multiple targets,
and users have a chance to provide guidance to the agent
for conducting the EmbodiedQA task. Likewise, we tackle
this issue but from a different angle. We study a slightly
different setting that turns out greatly reducing the difficulty
for navigation learning. We propose a proxy task to help the
agent adapt the learned model to the new environment using a
few questions about the markers. Building a global map for the
unseen environment during the exploration is also a feasible
solution but is out of the scope of the EmbodiedQA task.

III. BACKGROUND

In the EmbodiedQA task, the agent is spawned at a random
location in an environment. The agent has a single egocentric
camera mounted at a fixed height, observing the environment
by RGB vision input in the first person view. Note that it
is not allowed to access global information (map, location
coordinates) or the structure of the environment (rooms and
objects). Given an input question g about a target object 7',
the agent needs to navigate in the environment to find the
necessary information of the target to answer the question.
The agent can take action from the navigation actions space A.
In the EQA v1 dataset, A consists of four actions, i.e., “move
forward”, “turn left”, “turn right”, and “stop navigation and
start to answer the question”. The moving distance and rotation
angle for one action step is predefined as 0.5 meters and
9 degrees, respectively.

Generally, existing methods [1], [5], [6] divide the entire
process into two sub-tasks: an intermediate navigation task
and a downstream question answering task.

The navigation task is modeled as a partially observable
Markov decision process. The state space S consists of the
positions and poses of the embodied agent during exploration
which is not observable to the agent. The observation of
the agent only contains the first-person-view images O. The
state transition probability P(s’|s,a) indicates the probabil-
ity that an agent in the current state s transfers to a new
state s” by an action a. Let the initial state of an embodied
agent be so = (xo, ¥, 00), where x and y indicate the spatial
localization and o is the heading angle. For the navigation
task, the agent is expected to find a sequence of actions
{ag,ay, ...,a;} € Abased on the observations {og, 01, ..., 0;}
and move closer to the target object T specified in the
question q.

The question answering task is performed after the explo-
ration in the environment. The agent is requested to answer
the question g based on its observation on the target 7. The
performance of the agent is evaluated by both the navigation
performance (distance between the agent position and the
target object) and the final question answering accuracy or
QA accuracy for short.

IV. BASELINE: A SIMPLE PIPELINE WITHOUT RL

For the ease of optimization, prior works [1], [6] on
EmbodiedQA treat the navigation and question answering
as two separate modules and start training them separately.
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After that Deep RL is used to jointly train the navigation and
the QA modules. In this section, we discuss a simple baseline
network that can be jointly trained without RL.

A. Navigation Module

As opposed to directly minimizing the distance to the target
via RL approaches, we regard the shortest path, from the
spawn location to the target, as the supervision to guide
the agent’s behavior and train the navigation module using
the imitation learning via SGD.

Formally, given a question and a current observation o,
the navigation policy is represented by a model 7 (a|q, o),
where the policy 7 generates a sequence of actions that move
the agent. We want to keep the model as simple as possible
and use Long Short-Term Memory (LSTM) [42] to model
the policy and train the navigation module by mimicking the
shortest path in a teacher-forcing way. Given the observation
input o;, the question ¢, the current action a;, and the current
hidden state h;, the policy = predict the next action a;y; by
updating the LSTM unit as follows:

ajy1,hiy1 = LSTM(0;, q, a;, h;). (1)

In training, the agent is placed on the shortest path and
we expect the policy # to output the same action as the
shortest path does. Therefore, the navigation problem can be
optimized by the cross-entropy loss on the action prediction.
We found this simple navigation model performs better than
other complex models that used before.

B. Question Answering Module

Given the question g and the sequence of observations
from the last 5 steps along the navigation trajectory o =
(0i—4,0i-3,...,0;), the agent is expected to predict the
answer to the input question,

ans; = argmax py(anslo, g), )
ans

where ans indicates the answer candidates and py is the
QA model. Again we want to keep a simple model and reuse
the same QA module in previous works [1], [6]. The QA mod-
ule encodes the question with a 2-layer LSTM and performs
dot-product based attention between question embedding and
image features from the last five frames along the navigation
path right before the answer module is called.

C. Joint Training without RL

As shown in Fig. 2, we combine the navigation and the
QA module together in a united SGD training pipeline.
The concatenated embeddings of the observation, the current
action, and the question are inputted into the navigation LSTM
module. We initialize the model by mimicking the behavior
of the shortest path navigation. However, the inputs for the
QA model are different for training and evaluation. During
training, the QA model is trained to maximize py(ans|og, q),
where og, is the observed images in the ground-truth path
sequence. In evaluation, the QA model makes prediction
using pg(ans|opred, q), where 0,..4 is the observation at
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Fig. 2. Overview of our proposed baseline. The model contains two modules,
designed for the intermediate navigation task and downstream question
answering task, respectively. We adopt the LSTM as the navigation model
that takes as input the observation, current action, and question embedding.
In training, the agent is placed on the shortest path from its spawning location
to the target. At each step, the LSTM outputs a predicted action to be executed
by the agent, which is supervised by mimicking the behavior of the shortest
path. The QA module outputs the final answer based on the question and
observations from the last five action steps.

the predicted trajectory of the navigation model. To overcome
the gap between training and evaluation, we draw the idea
from Incremental Learning [43] and propose to gradually
incorporate navigation predictions in training as the navigation
model becomes more accurate.

V. CALIBRATION SETTING AND ADAPTATION METHOD

In this section, we introduce an easier and practical and
EmbodiedQA setting called calibration. We design a warm-up
stage that the agent is asked a few rhetorical questions when
it enters into a new environment. Our goal is to adapt the
agent policy to the new environments. For example, when
an agent is spawned in a new environment, a user places a
few markers in a room and ask questions about the color of
these markers. During the process, the agent learns to adapt
its model parameters to the new environment.

We call it a calibration setting as users could calibrate an
agent to a new environment in a similar way as calibrating
a new camera. The setting is essentially the same as the
original setting except adding an extra QA step. It needs
no additional supervision as the answers to the rhetorical
questions are known. It is a practical setting as the adaption
can be conveniently finished via the same QA interface without
changing the agent’s pipeline.

We propose a proxy task for the agent to explore the new
environment by randomly placing some markers. On top of
that, we design a distillation framework for policy adaption.
We illustrate the way the agent explores environments with
marker guidance, including how to set up markers and how
to adapt the policy model to the new environments with these
markers.

A. Marker Generation

We select the objects, which do not overlap with the objects
in the training/validation/test objects in the EQA vl dataset
as our markers. In total, we found five such objects from
the SUNCG dataset [44], which is the source of the
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Fig. 3. Examples of the five marker object candidates. We carefully select
these objects from the SUNCG dataset [44] to avoid overlapping with the
objects in the EQA v1 dataset [1].

Fig. 4.

Examples of the placed positions of the five marker objects. Each
yellow star indicates we place a marker there.

EQA vl dataset. The five markers are “mailbox”, “safe”,
“shoes”, “tripod”, and ““cloth”, as shown in Fig. 3. Note mark-
ers can be any foreign objects in practice and we use the above
objects mainly because of their availability in the dataset.
For simplicity, we do not use duplicate markers in the same
environment.

We randomly place the marker objects in each testing
environment before evaluation. For example, each star in Fig. 4
indicates a location where we place a marker. For each marker,
we automatically generate a question: “what is the color of
the <marker>?". We are able to paint arbitrary color on the
placed marker objects so that answers to the questions do not
matter. We then generate the shortest path for a random spawn
location to each target marker. In our experiments, the path is
generated by the A* search algorithm [45] through the render
API of the environment. Note as required in the EmbodiedQA
setting, we are not allowed to access the structure data or
global map about the environment during this process. In the
case where A* is unavailable, it is also feasible for users to
mark the shortest path and input this information to the agent.
In total, we generate 290 questions for 290 markers in 58 test
environments. These questions will be used to adjust the agent
during the adaptation stage.

B. Model Adaptation

We employ a policy distillation method for model adapta-
tion. Different from previous transfer learning methods [46],
our goal is to adapt the trained agent to a new test environment
while retaining the essential knowledge learned from the
original training set. Inspired by recent work [47], we perform
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Fig. 5. An illustration for the policy updating during calibration. The grey

model in the figure is the trained navigation model from the training set, which
is fixed during the adaptation process. The yellow model is the calibrated
model that is jointly optimized by both the policy loss from imitation learning
on marker data and the distillation loss on the intermediate representations
from the pre-train model.

the distillation over the intermediate layer in the LSTM
model. Our adaptation network is shown in Fig. 5. The input
to this model is the automatically generated questions for
the new environment. The model is learned to balance two
types of supervision, i.e., the new policy loss of the markers
and the imitation loss to the pre-trained representation. For
convenience, we use the superscript to denote the adapted
model. Similar to the previous training stage, the observation
of, question embedding ¢¢ and current action a; are input
to the navigation policy model at the i-th action step of the
adaptation framework. We have the following modeling for
the policy on the marker guided exploration,

C C C C C C C
ai y,hi | =Nav (07,49, a;, h).

3)

Let L be the policy loss over the new questions, defined
by the cross-entropy loss on the action prediction with the
action from the generated shortest path. Meanwhile during
calibration, given the same input, we also minimize the
distillation/imitation loss [48] between the new (hidden states)
and the pre-trained activations by:

G = > 1—cos(h{, h]), 4)
1

where cos denotes the cosine similarity in our experiments.

h{ and hf denote the hidden states of the adapted model and

the pre-trained model at i-th step, respectively. The pre-trained

model is held fixed during the distillation process. The final

adaptation loss function is computed from:

£°=AL5+ (1 —2)LE, o)

where the 1 is the parameter to balance the policy loss and
distillation loss. We empirically analyze the value for A in
Section VI-D. After the adaptation, the agent is tested on the
test questions in the same manner as in the original setting.

V1. EXPERIMENTS
A. Setup

1) Dataset and Settings: The EQA vl dataset [1] is a
VQA dataset grounded in House3D [49]. There are 648 envi-
ronments with 7,190 questions for training, 68 environments
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TABLE I

EVALUATION OF NAVIGATION AND QUESTION ANSWERING ACCURACY ON THE EQA V1 TEST SET. * MARKS THE AGENT USES NO VISUAL
INFORMATION. “TEST ENVS” INDICATES THE TEST SETTING, WHERE “STANDARD” INDICATES THE AGENT’S POLICY IS FIXED DURING
EVALUATION. “CALIBRATION” IS THE NEW SETTING WHERE USERS CAN FIRST ASK THE AGENT IN THE TEST ENVIRONMENT A FEW
QUESTIONS ABOUT MARKERS, DURING WHICH THE AGENT CAN CHANGE ITS POLICY. WE SPAWN THE AGENT AT 10, 30,

AND 50 ACTION STEPS AWAY FROM THE TARGET FOR EVALUATION, INDICATED T_1¢, T—30, AND T_50 IN THE TABLE,
RESPECTIVELY. DA MEASURES THE CHANGE, IN THE DISTANCE, TOWARDS THE TARGET AFTER NAVIGATION.

A HIGHER DA INDICATES THE AGENT IS CLOSER TO THE TARGET WHEN IT STOPS

Methods Test Envs Navigation d a QA accuracy
T 10 T 30 T 50 T 10 T 30 T 50

Blindfold* [7] Blind -0.02* -0.13* -0.44* 50.34%* 50.34%* 50.34%*
PACMAN [1] Standard -0.04 0.62 1.52 48.48% 40.59% 39.87%
PACMAN +REINFORCE [ 1] Standard 0.10 0.65 1.51 50.21% 42.26% 40.76%
NMC [6] Standard -0.29 0.73 1.21 43.14% 41.96% 38.74%
NMC +A3C [6] Standard 0.09 1.15 1.70 53.58% 46.21% 44.32%
Ours Standard 0.23 1.48 2.36 52.91% 48.01% 47.29%
Ours (Fine-tuning) Calibration 0.13 1.52 3.27 52.11% 48.22% 48.27%
Ours (Distillation) Calibration 0.19 1.53 3.39 52.23% 48.91% 48.83%

with 862 questions for validation and 58 environments with
933 questions for testing. The environments in different split
have no overlapping. To sweep over the difficulty of the task,
agents are set by spawning 10, 30, or 50 actions away from the
target, denoted as T_1¢, T—30, and 7T_sg, which corresponds to
the distance of 0.94, 5.39, and 11.01 meters from the target,
respectively. For the medium and long distance (7_39, 7-50)
questions, the target objects are usually not visible to the
agent, and hence the agent needs to take actions to explore
the environment to reach the target.

In the standard setting, the agent is optimized only on the
training data split. Once trained, its policy is fixed and then
evaluated on the test questions. In our proposed calibration
setting, users can ask the agent a few questions about markers
in the test environment. During the process, the agent can
change its policy, and its policy is fixed thereafter and evalu-
ated on the test questions.

2) Baselines: We compare our method to the follow-
ing baselines: (i) Planner-Controller Navigation Module
(PACMAN) [1] designs a hierarchical structure for navigation
module, with a planner to select actions (directions) and a con-
troller that decide how far to move following this action. The
navigation module and visual question answering model are
first trained separately and then jointly trained by the reinforce-
ment learning method. (ii) Neural Modular Control (NMC) [6]
proposes a hierarchical policy for the navigation module,
where the higher-level master policy proposes subgoals to
be executed by sub-policies. (iii) Blindfold baseline [7] is a
question-only BoW baseline that never navigates nor observes
the environment. We cite their performance reported in their
papers for an apple-to-apple comparison.

3) Evaluation Metrics: Following [1], [6], we evaluate the
performance of the navigation and the question answering
accuracy. We evaluate the navigation policy by da, which
is the change in the distance towards the target, from the
initial spawning position to the final stopping position. In other
words, how much progress does the agent make moving
towards the target. As mentioned, the EmbodiedQA agent
is expected to first observe the target before answering the
question about it. The navigation performance d, is, therefore

perhaps, equally important in evaluating an agent. There are
191 answer candidates in the EQA v1 dataset. Similar to other
VQA tasks, the question answering performance is measured
by the classification accuracy.

4) Implementation Details: We use PyTorch [50] for all
experiments. We develop our model based on the code released
by [1]. In experiments, we take the pre-trained CNN model
released by [1] as the image encoder. The input question is
embedded by a two-layer LSTM with cell size 64, and we
learn the embedding for each word with 64 dimensions. We
take a two-layer LSTM with cell size 128 as the navigation
module. The 4 in Eqn. (5) is set to be 0.2 according to the
performance on the validation set. The Adam [51] optimizer
with the learning rate of 1 x 107> is used for all the experi-
ments. The source code and models will be made available to
the public.

B. Baseline Comparison

Table I summarizes the comparison in terms of the navi-
gation and the QA accuracy on the EQA vl dataset. Recall
Blindfold is the BOW baseline in [7] using no visual infor-
mation. Even though the Blindfold baseline achieves the best
QA accuracy among all of the other methods, it suffers from
the very poor (random) navigation accuracy. This is expected
since the agent is merely learning the language bias between
the question and answers. In contrast, other EmbodiedQA
methods achieve much higher navigation accuracy which lends
credibility to their actual QA performance. In the standard
setting, our simple baseline method achieves comparable or
even better performance compared to state-of-the-art methods
such as PACMAN and NMC. It yields the best navigation
accuracy and competitive QA performance. The improvement
on QA accuracy is more evident for the medium (7_30)
and long (7_s0) distance questions. These results verify the
efficacy of our LSTM navigation policy over other more
complicated policies.

Under the calibration setting, “ours (distillation)” method
outperforms our baseline method. The biggest gain comes
from the navigation, especially from the medium distance
(T-30) and long distance (7_50) navigation. For example,
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‘ Question: what color is the fish tank/bowl? ‘ Question: What room is the air conditioner located in? ‘ Question: What room is the plant located in?

{Our: Brown} {PACMAN: Blue}

{Our: Dinning room} {PACMAN: Dinning room}

{Our: Bath room} { PACMAN: Living room

Spawn location == Trajectory of the PACMAN agent

Target location Trajectory of our agent

Fig. 6. Comparison of qualitative results with PACMAN [1] on the EQA v1 dataset. The yellow line and red line indicate the trajectories of our calibrated
agent and PACMAN agent, respectively. As we can see, given a question about a specific object (indicated by the star in the figure), our calibrated agent
could easily find the correct direction and get close to the target for further observing. In contrast, the previous PACMAN agent has no prior information
about the house, resulting in the wrong direction to explore. The answers of the two agents are shown at the bottom of each environment. The answer in bold

is the correct answer to the question.

with the calibration, the long distance (7—50) evaluation is
improved from 2.36 to 3.39, and the QA accuracy is also
increased from 47.29% to 48.83%. The results substantiate the
importance of the introduced calibration step in the Embod-
iedQA setting. The comparison between the last two rows
suggests the distillation may be more effective than fine-tuning
in this calibration. It is worthwhile noting that the calibration
seems not improving the performance for the short distance
questions (7_19). In this situation, the agent is spawned very
closed to the questioned object (on average 0.94 meters), and
the agent is often able to observe the target without executing
any further move.

In both settings, we should note that even though our simple
baseline achieves competitive results, EmbodiedQA remains to
be a very challenging task. The room for further improvement
is still very big. We believe future researches will significantly
beat this simple baseline both in terms of navigation and
QA accuracy.

C. Qualitative Results

We show some qualitative results in Fig. 6. The yellow
line and red line indicate the trajectories of our agent and
PACMAN [1] agent, respectively. As we can see, given a
question about a specific object (indicated by the star in the
figure), our agent can find the correct direction to explore and
usually moves closer to the target. In contrast, the previous
PACMAN agent has no idea about where the target is in this
new environment. As a result, the agent may behave randomly,
wasting the valuable action steps, or explore in a totally wrong
direction.

The answer predictions are shown at the bottom of each
environment. The answer in bold indicates the correct answer.
For the rightmost question, although PACMAN predicts the
correct answer, the agent is actually quite far away from
the target, i.e. its prediction is right but not for the right
reason. The result echoes the statistical irregularities in the
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Fig. 7. Navigation performance curve over the number of placed markers
in each environment. We evaluate the agent at the short distance 7_1¢,
medium-distance 73, and long-distance T_5q. The curves prove the effec-
tiveness of the placed markers. In general, the more markers we place,
the higher the navigation performance is achieved.

EQA vl dataset as reported in [7]. However, we believe this
issue can be mitigated by evaluating both QA and navigation
accuracy.

D. Setting Studies

We design experiments to evaluate our design choices in the
proposed calibration setting.

1) The Number of Placed Markers: As introduced in
Section V, we select five markers from the SUNCG dataset
that do not overlap with the target objects in the EQA
vl dataset. By default, we place all of them in each test
environment. To understand the influence of the placed mark-
ers on the navigation performance, we gradually place the
markers in each environment. Fig. 7 shows the navigation
performance curves over the number of placed markers in the
x-axis. These results indicate placing more markers improve
the agent’s performance for medium-(7_39) and long-distance
(T—50) questions. The results suggest that users can repeatably
place markers more time to improve the agent’s performance.
It is less beneficial for the short-distance questions where the
agent is often able to see the target at its spawn location.
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Fig. 8. Performances on different values of the balancing parameter 4 defined
in Eqn. (5).

2) The Balancing Parameter Z: In Eqn. (5), 4 is a
hyper-parameter balancing the policy learned from the training
data and the new environment. Fig. 8 shows the performance
curves over different values of A, in which 1 = 0 denotes only
using the policy loss whereas A = 1 is only distilling from the
pre-trained model. From the difference between 4 = 0 and
A =1, we see that the calibration help improve the pre-trained
model. The best navigation performance is achieved at 4 = 0.2
which suggests our distillation can balance the two losses and
perform better than using the either loss alone.

VII. CONCLUSION

In this paper, we conducted an empirical study to revisit a
recent topic of EmbodiedQA. Our studies show that Embod-
iedQA is an interesting yet challenging problem where the QA
and navigation accuracy are both needed to faithfully evaluate
an agent. Besides, we show that a simple yet effective joint
training baseline is able to achieve very competitive results
to the state-of-the-art. We found the poor navigation in a
new environment is the current bottleneck for EmbodiedQA.
We tackled this issue from another angle by introducing a
slightly different “calibration” setting. In this new setting,
to assist the agent in adapting to the new environment,
we design a proxy task where we randomly place markers
and ask questions about them. These rhetorical questions
drive the agent to explore and familiarize the environment.
Experimental results validate this small change in setting leads
to a significant gain in navigation when the agent is further
(30 and 50 action steps) away from the target.
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