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ABSTRACT

Perfluorooctanoic acid (PFOA) is used in a variety of industries and highly persistent in the
environment, with potential human health risks. Photocatalysis has been extensively used for
the decomposition of various organic pollutants, yet its simulation and modelling are
challenging. This research aimed to establish different machine learning (ML) algorithms
which can simulate and predict the photocatalytic degradation of PFOA. The published results
were used to estimate and predict the photocatalytic degradation of PFOA. Statistical criteria
including the coefficient of determination (R?), mean absolute error (MAE), and mean squared
error (MSE) were considered in assessing the best method of modeling. Among seven ML
algorithms pre-screened, Adaptive Boosting (AdaBoost), Gradient Boosting Machine (GBM)
and Random Forest (RF) showed the best performance and were chosen for deep modelling
and analysis. Grid search was used to optimize the models developed by AdaBoost, GBM, and
RF; and permutation variable importance (PVI) was used to analyze the relative importance of
different variables. Based on the modeling results, GBM model (R’ = 0.878, MSE = 106.660,
MAE = 6.009) and RF model (R’ = 0.867, MSE = 107.500, MAE = 6.796) showed superior
performances compared with AdaBoost model (R? = 0.574, MSE = 388.369, MAE = 16.480).
Furthermore, the PVI results suggested that the GBM model provided the best outcome, with
the light irradiation time, type of catalyst, dosage of catalyst, solution pH, irradiation intensity,
initial PFOA concentration, oxidizing agents (peroxymonosulfate, ammonium persulfate, and
sodium persulfate), irradiation wavelength, and solution temperature as the most important

process variables in decreasing order.
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Highlights

e Machine learning models were developed to predict PFOA photocatalytic degradation.
e The GBM and RF models were more robust than AdaBoost model.

e The best modeling performance was achieved by GBM based on PVI analysis.

e PVI analysis showed high importance of irradiation time, catalyst type, catalyst dosage

and pH in declining order.



1. Introduction

Per- and polyfluoroalkyl substances (PFAS) possess important properties as repellents (of oil,
dirt, and water), surfactants, and frictions reducers. Thus, they are widely used in a variety of
consumer products such as carpets and household products to improve stain-proof and water-
proof properties. They are also employed for several other purposes including membranes,
lubricants (for machinery), firefighting foams, and adjuvants in pesticides.['?! Due to their
toxicity and persistence in the environment, bioaccumulation, and probable health impacts,
PFAS have recently received increased worldwide attention.*! It has been reported that human
exposure to even trace level of PFAS can lead to their bioaccumulation in the blood, with
correlations between exposure to PFAS and immunotoxicity.*! Notably, perfluorooctanoic
acid (PFOA, C7FsCOOH) and perfluorooctane sulfonic acid (PFOS, CgF17SO3H) are the most
frequently reported PFAS in the environment.!

Several processes have been used for PFAS removal such as nanofiltration membranes, !
ion exchange resins,!® hybrid membrane filtration,[’! biodegradation,® and adsorption.”! In
adsorption, PFAS are only transferred from one phase to another whereas redox techniques
could be used for decomposition of PFAS.1% Photocatalytic degradation is widely used for
PFOA treatment, resulting in the formation of various intermediates including PFHpA,
PFHxA, PFPeA, PFBA, PFPrA and TFA ['"1?] which are less toxic than PFOA.[!3

A variety of metal oxides have been used for the photocatalytic decomposition of PFOA.
TiO2, as the most frequently used photocatalyst, has shown insignificant efficiency for the

degradation of PFOA. In comparison, In,O3 and B-Ga>O3 have shown good performances!'*

which are mainly related to their wide band gap energies (4.8 eV and 3.6 eV, respectively)!!*!°]
and appropriate surface properties. Such different performance is mainly due to much lower

position of the conduction band of TiO; (-4.21 eV) than that of f-Ga203 (-2.95 eV), relative to

the vacuum energy level. Therefore, the reductive potential of the photoinduced electrons of 3-



Gay0; is remarkably higher than that of TiO2.1'®) ZnO is a substantial alternative to TiO which
has been widely used for photocatalytic degradation of various organic pollutants.l!’2% In
addition to its sufficient electron mobility, abundance and chemical inertness, ZnO absorbs a
larger fraction of light (compared to TiO2).['”) Besides, ZnO has shown higher efficiencies than
TiO, in some cases.?!*?] CeO, is another metal oxide which has found applications in
photodegradation of PFOA.?*! Other than metal oxides, some other materials including BiOCI
(bismuth oxychloride), BN (boron nitride), NiAl-LDHs (layered double hydroxides),
Bi30(OH)(PO4)> (bismuth oxyhydroxyphosphate or BOHP), and BiFeOs (bismuth ferrite or
BFO) have also been used recently for the photocatalytic decomposition of PFOA. It is worth
mentioning that unlike hydroxyl radicals ("OH) which have been inert to PFOA in some
reports,** persulfates (S20s*) and sulfate radicals ("SOs’) are highly efficient in the
photodecomposition of PFOA. Notably, sulfate radials and persulfates could be produced from
oxidizing agents including ammonium persulfate (APS), sodium persulfate (NaPS), and
peroxymonosulfate (PMS).[25-27]

In spite of unique features of photocatalysis, evaluating the feasibility and efficiency of
semiconductors in photocatalytic applications is often a challenging task, by conducting
lengthy and carefully designed experiments under controlled conditions. Often, many hours or
days are needed to determine the degradation efficiency of organic pollutants. In addition, some
semiconductors are very expensive. For instance, although In2O; and B-Ga,0Os3 have been
widely researched for the degradation of PFOA, they are not cost effective. Furthermore, many
variables are involved in photocatalysis such as light wavelength and intensity, solution pH,
pollutant concentration, and catalyst amount, which all need to be carefully assessed. Overall,
the rapid estimation of degradation efficiency of organic pollutants in photocatalytic reactions

is a major challenge. As a result, modeling, simulation and prediction of photocatalytic



efficiency for organic pollutant degradation are a highly valuable and complimentary tool to
experimental research.

The prediction of the photocatalytic degradation of PFOA has not been studied yet.
Moreover, it is highly valuable to use modelling to support the photocatalytic experiments by
evaluating the relative importance of process variables which saves experimental time, costs,
and energy consumption by optimizing and reducing the number of experiments. Mathematical
modelling has been widely used for photocatalytic applications in both air and water.!?8-3!]
Acceptable performances could be achieved by mathematical models. For example, Zekri et
al. (2013) used mathematical modeling for estimating the degradation performance of a
photocatalytic reactor, with advantages of no need to introduce adjustment variables and a

(291 On the downside, applying these models could be

minimum number of experimental data.
accompanied by limitation of the number of effective factors'*?] whereas there are several
effective process variables in photocatalysis, as discussed previously. In addition, increased
consumption of computational resources is needed to apply these models for complex systems
with numerous variables.*>**1 More importantly, Afzal et al. (2021) suggested that the
predictions of mathematical models could be acceptable on the condition of well understanding
the impacts of underlying assumptions.**! Due to their potential performances and lack of need
to consider the scientific background of processes and mechanisms to predict the correlations,
machine learning (ML) processes are being widely used for modeling the correlations among

s.361 They have been

various independent and dependent parameters in different application
highly promising to optimize the quality control in complex manufacturing environments in
which the causes of problems are hardly detected. The identification of implicit relationships
in a dataset is a main advantage of ML procedures. The ability of handling high dimensional

problems and data is another advantage of ML procedures.*”) Notably, ML approaches are

superior to mathematical models in modeling the complicated correlations among numerous



process variables. There are several types of ML processes though with different performances
in variety of applications.l*! It means that each method of ML has unique advantages and
disadvantages®*”! depending highly on its application. As mentioned, PFOA is one of the most
frequently observed PFAS in the environment.*! Despite its vital importance, the application
of ML processes in predicting the photocatalytic degradation of PFOA as an emerging
persistent organic pollutant has not been up to now. To bridge this knowledge gap, a systematic
investigation was carried out to develop the most promising ML algorithms for such a purpose
followed by analyzing the relative importance of numerous process variables for the first time,
to the best of our knowledge. In this research, different ML algorithms including Multiple
Linear Regression (MLR), Random Forest (RF), Ridge Regression (RR), Multilayer
Perceptron (MLP), Gradient Boosting Machine (GBM), Adaptive Boosting (AdaBoost), and
Support Vector Machine (SVM) were used to nominate a potential method to estimate the
photocatalytic decomposition of PFOA over various photocatalysts. The performance of ML
algorithms is highly dependent on the hyperparameters. Thus, tuning all hyperparameters is
essential to develop an optimized model.*®! The efficiency of PFOA photocatalysis is
dependent on various parameters. Among those, nine key variables including solution pH,
solution temperature, catalyst dosage, light irradiation intensity, irradiation wavelength,
irradiation duration, initial PFOA concentration, type of catalyst, and oxidizing agents (PMS,
APS, and NaPS) were used to model the process carefully. Eventually, the performance of the
developed models was assessed based on both the outcomes and the relative importance of

process variables.

2. Materials and methods

2.1. Data collection and processing



The published results were used to estimate and predict the percentage of PFOA photocatalytic
degradation. A detailed literature review was conducted by considering several factors, e.g.
reporting solution pH and light irradiation intensity (in term of wattage), and using a
single/distinct irradiation wavelength in the UV region (200-400 nm). Notably, a single/distinct
irradiation wavelength is not generally used in the visible region (400-800 nm). Furthermore,
compared to UV light illumination, visible light irradiation has much lower effect on the
photocatalytic degradation of PFOA. For instance, using Ga;Osz assisted by PMS, the
photodegradation of PFOA under UV light (254 nm) and visible light (400-800 nm) was 100%
and <10%, respectively, although the irradiation intensity of visible light was higher than that
of UV light.”®! In another research, using TiO, assisted by PMS, PFOA was thoroughly
degraded after 2 h and 9 h under UV and visible irradiation, respectively, whereas the
irradiation intensity of visible light was approximately 224 times higher than that of UV
light.?”! Therefore, in order to consider the effect of irradiation wavelength in the visible region
(in addition to UV region), the mean wavelength value (i.e. 600 nm) was used in the dataset.
Due to their potential performances, PMS, APS, and NaPS were selected to evaluate the
effects of oxidizing agents. Overall, a comprehensive dataset containing 1343 datapoints was
compiled by considering 18 different categories of catalysts including ZnO, ZnO-rGO, Ga;0s3,
TiO2, TiO-MWCNT, modified TiO; by loading metals, metals-doped TiO2, TiO2-Sb20Os3,
BiFeO;-rGO, In203, BiOCl, CeO:, NiAl-LDHs, CeO2@NiAl-LDHs, BN, BiPO4, BOHP, and
BOHP-CSI11:12.23.2527.39-52] ywhere the effects of several key process variables on the
photocatalytic decomposition of PFOA have been reported. Plot Digitizer was used to extract
the datapoints from those publications. The following equation was used to normalize all of

the input data in the range of 0 to 1 for data processing:[>*!

x;—minimum value of data

x; normalised proportion = (D)

maximum value of data—minimum value of data



where x; is a data point. It is notable that data normalization was performed to reduce

computational complexity and to prevent over training for the input data (not for output data).

2.2. Selection of ML procedures and modelling generality

As the performances of various models vary in different applications, appropriate selection of
the procedures for modeling is critical. Besides, Occam’s Razor principle states that “a model
should be as simple as possible, and as complex as needed”. Accordingly, RR, LR, MLP,
AdaBoost, RF, SVR, and GBM algorithms using default hyper-parameters were pre-screened
from Scikit-learn library. To assess the performances of the mentioned methods, R’ (Eq. 2) and

36,541 The datasets were divided into train

mean squared error (MSE) (Eq. 3) were applied.|
(80%) and test (20%) datasets. Five-fold cross validation was applied to assess the validity of
the models developed to prevent overfitting and devastating the data. The test dataset was
employed to check the prediction strength of the models by unseen data points. A grid search
was carried out to tune the hyperparameters for each of the models. The outcomes of the grid

search were employed in all phases of modeling.

N Vprdi—Yacti)
R? =1 —2=1prd - 2
Z?’=1(Yprd,i_ym) ( )

1 2
MSE = Nzlivzl(yprd,i - yAct,i) (3)
where N is the total number of datapoints, y, is the average value of actual PFOA
photocatalytic degradation (%), y4c:i 1s the actual value of PFOA photocatalytic degradation

(%), and yp,q,i 1s the predicted value of PFOA photocatalytic degradation (%).

2.3. Gradient boosting machine
GBM is among powerful ML methods developed by Friedman that enables data modeling and
analysis for either classification problems or regression.>>3¢ GBM is an ensemble learning

algorithm where a series of individual models (generally decision trees) are employed to create
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the final model. Like neural networks that employ gradient descent for weight optimization,
the loss function is minimized by the gradient in GBM.”] The learning process fits new models
to yield a more accurate prediction of the response in GBMs. Maximizing the correlation
between the new constructed base-learners and the negative gradient of the loss function
(correlated with the total ensemble) is the main principle of this algorithm. Although
nomination of the loss function is optional, considering the classic squared-error loss as the
error function eventuates in consecutive error-fitting in the learning process. So far, numerous
loss functions have been derived, and such a high flexibility could result in the promising
customization of GBMs to different specific data-driven tasks. It allows plenty of flexibility in
the model design, resulting in a trial-and-error process when it comes to selecting the most
suitable loss function. GBMs have been successfully used in practical applications to address
a variety of ML challenges./*8! Available elements in GBMs include additive model, strong and
weak (base) learners, and loss function. Notably, the weak learners which are the initial
decision trees are more powerful than the random estimate in prediction. The strong learners
with their remarkable power in prediction are composed of various weak learners. Boosting the
weak learners to the strong learners is required for analyzing and modeling the processes in
GBMs. For such a purpose, training decision trees are used in serial, gradual and additive
approaches. While maintaining the current base learners, new weak learners could be added to
the model to reduce either loss function or total error of model.>®Y) The best situation of the
hyperparameters (in grids) was determined by a grid search for estimation of the photocatalytic
degradation efficiency of PFOA in GBM.!®! Notably, there were five key hyperparameters in
this analysis: the minimum number of samples in each leaf (min_samples_leaf), the number of
gradients boosted trees (n_estimator), the maximum depth of GBM trees (max_depth), the
minimum number of samples for splitting an internal node (min_samples split), and the

maximum number of features for the best split (max_features). All parameters were adapted in
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the ranges as (2, 3, 4, 5, 6, and 7), (100-1000), (1, 2, 3, 4, and 5), (2, 3,4, 5, 6, and 7), and (2,
3,4, 5,6, and 7), respectively. In addition, the generality of the GBM model was assessed

within a grid search as discussed in section 2.2.

2.4. Random forest

RF is among powerful ML methods that enables modelling both regression and classification
cases. With RF algorithm, a variety of decision trees are generated, as regression functions,
where the average of decision trees represents the final proportion of the response variable.[6?!
RF is a combination of tree predictors, whereby each tree is dependent on values of a random
vector distributed equally and independently across all trees in the forest. Increasing the
number of trees in the forest causes the generalization error to converge to a limit. An individual
tree classifier's generalization error relies on the strength of individual trees in the forest as well
as the correlation between them. Each node is split by using a random selection of features
which generates error rates that are favorably comparable to those obtained from AdaBoost.
However, they are more robust in terms of noise. The response to the increased number of
features, in splitting, is evaluated by strength, error, and correlation monitored by internal
estimates.[%3] Parallel ensembling is used in an RF classifier to fit numerous decision tree
classifiers, in parallel, on various dataset samples. Overwhelming voting or average is used to
yield the final result, therefore reducing over-fitting and improving the accuracy of prediction.
Thus, single decision tree-based models are less accurate than multiple decision tree-based
models. A combination of bootstrap aggregation and random feature selection is used to
develop a series of decision trees, and applicable to both regression or classification

[57) The generality of the RF model was assessed within a grid search as discussed in

problems.
section 2.2. The maximum number of features for the best split (max_features), the minimum

number of samples in each leaf (min_samples_leaf), the number of gradients boosted trees
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(n_estimator), and the minimum number of samples for splitting an internal node
(min_samples split), i.e. the hyperparameters, were adapted in the ranges as (2, 3, 4, 5, 6, 7

and 8), (1, 2, 3,4, 5, 6, 7 and 8), (100-1000), and (0.5, 1 2, 3, 4, 5 and 6), respectively.

2.5. AdaBoost

The AdaBoost approach can be used for both regression and classification cases.[**! AdaBoost
is an ensemble learning process where an iterative process is used to improve poor classifiers
by learning form the relevant errors. Sequential ensembling is employed in AdaBoost, whereas
parallel ensembling is employed in RF. To achieve a powerful classifier with high accuracy, a
lot of poor performing classifiers are combined. Although the remarkably improved efficiency
of the classifier introduces AdaBoost as an adaptive classifier, it could yield overfits. Overall,
AdaBoost is sensitive to either outliers or noisy data, but it is highly promising for binary
classification problems in which the performance of decision trees should be boosted.!*” In this
research, the development of the AdaBoost model has been generalized based on the condition
discussed in section 2.2. Optimization and tuning the hyperparameters were conducted by a
grid search to identify the best loss function. There were two key hyperparameters in this
analysis: learning rate (0.1, 0.5, 1, 2, 3, 4 and 5) and various gradients boosted trees
(n_estimator) in the range of 20-500. It is notable that goodness of fitness was assessed by the

learning curve for all GBM, RF, and AdaBoost models.

2.6. Evaluation of variable importance
Permutation variable importance (PVI) approach is a method for inspection of fitted models

(63] In general, PVI takes advantage of its generality, ease and rate of

from tabular data.
calculation, and analyzing either interactive or individual effects of variables.[>*” In such an

approach, random alteration of the input is used for consideration of the model errors in
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prediction of the output. Thus, a feature is more important when there are more errors.[®8! With
regard to the errors, the feature importance was measured by MSE. It is notable that input
variables importance in photocatalytic degradation of PFOA over different photocatalysts was

evaluated by PVI approach for all models (GBM, RF, and AdaBoost).

2.7. Comparison of model performance and strength

The strengths and performances of different ML-based models in simulating PFOA
photodegradation over different photocatalysts were compared by considering key statistical
indices such as MSE, MAE, and R’ which were calculated using the test datasets. MAE was

calculated based on equation (4):3¢]

MAE = 1 — 2=l @)

where n, yi, and z; are the overall number of data points, predicted and actual values,

consecutively.

3. Results and discussion

3.1. Selection of ML algorithms

The performances of seven ML algorithms used for the estimation of PFOA photocatalytic
degradation were evaluated (Table 1). According to the statistical indices and in order to
compare performance and PVI of different algorithms, the first three models with the highest
prediction strengths, i.e. GBM, RF and AdaBoost, were nominated to deeply model and
analyze the photocatalytic degradation of PFOA over various photocatalysts. The high
efficiencies of these three algorithms have been reported in other applications such as the

prediction of H» production by fermentation process.!*®
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Table 1. Performance comparison of seven ML algorithms for photocatalytic decomposition

of PFOA by different photocatalysts.

GBM RR  AdaBoost RF LR SVR  MLP

Train MSE 171.14 608.13  444.61 54.86 618.57 627.97 484.82
Test MSE 189.18 693.48 496.30 178.14 644.62 618.97 552.07
Total-Train RZ  0.80  0.26 0.458 093 0278 0.267 0.409

Total-Test R’ 0.78 0.28 0.485 0.81 0211 0.242 0.428

3.2. AdaBoost

A grid search, with each loss function, was used to tune the various hyperparameters conditions
in order to nominate the most suitable loss function. The values of tuned hyperparameters along
with the relevant values of R and MSE for various phases of modeling, i.e. exponential, square,
and linear, are shown in Table 2. As evident, square phase resulted in the best loss function.
The corresponding learning rate and n_estimator were 2 and 40, respectively. The values of
MSE for both validation and training phases, i.e. 401.877 and 343.997, and R’ for both
validation and training phases, i.e. 0.515 and 0.587, were calculated accordingly. The model
performance in PFOA photocatalytic degradation over several photocatalysts was evaluated by
providing a test dataset including one fifth of the hidden data points. As evident in Table 2 and
Fig. 1, a medium strength of prediction (57%) with an MSE of 388.369 was provided by this
model in the test phase. Figure 1(b) illustrates learning conditions of training and validation for

the developed AdaBoost model in various epochs.
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Table 2. Outcomes of AdaBoost model by using several loss functions with adapted hyperparameters.

Grid search R’ R’ R’ R’ MSE MSE MSE MSE

learning rate  n-estimator ~ Test ~ Total-Train Validation Train Test Total-Train  Validation Train
Square 2 40 0.574 0.607 0.515 0.587  388.369 327.102 401.877  343.997
Exponential 5 20 0.444 0.477 0.430 0.496  465.523 445.783 429341  484.286
Linear 2 160 0.430 0.465 0.445 0.474  485.895 453.803 466.045  444.846
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PFOA degradation Learning curve for AdaBoost
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Figure 1. (a) Coefficient of correlation (in test phase), (b) learning curve, and (c) strength of

prediction (in test phase) of the model developed by AdaBoost.

There is a significant difference between the prediction strength of this model for estimating
photocatalytic degradation of tetracycline antibiotics!**! and that of PFOA (this research).
Firstly, another pollutant was considered in the other modeling, so the targets are different.
Secondly, another type of catalysts (MOFs) was considered in their research. Under these
circumstances, similar outcomes might not be expected since they are both of crucial
importance. More importantly, different model performances have been reported in different

applications although a similar modeling approach was used.[**¢”]

3.3. Gradient boosting machine
Tunning all hyperparameters was performed in a grid search to evolve a GBM model. The best

situations of the hyperparameters were obtained consisting of 3 (min_samples leaf), 100
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(n_estimator), 5 (max_depth), 6 (min_samples split), and 6 (max features). Both cross-
validation and training phases were conducted under the mentioned conditions. The
corresponding MSE values were 114.061 and 42.750; and R’ values were 0.864 and 0.950 for
these phases, respectively. In addition, MSE values of 146.90 and 51.485, and R’ values of
0.840 and 0.937 were derived for the test and total training phases, respectively, signifying the
remarkable potential of this model with a prediction strength of 84% in the photocatalytic
degradation of PFOA over various photocatalysts (total training includes both cross-validation
and train phases). The promising strength of prediction obtained by using this model in the test

phase can be evidenced in Fig. 2.

PFOA degradation Learning curve for GBM
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Figure 2. (a) Coefficient of correlation (in test phase), (b) learning curve, and (c) strength of

prediction (in test phase) of the model developed by GBM.
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Overfitting potential and goodness of fitting are among major criteria used for evaluation
of the model performance. Figure 2(b) depicts the learning curve for cross-validation and
training conditions of the GBM model developed. As evident, the MSEs obtained were
sufficiently low and became stable at epochs higher than 600. Moreover, their insignificant
difference at high epochs represents lack of overfitting and good strength of prediction in the

GBM model.

3.4. Random forest

A grid search was employed to adapt the hyperparameters in development of the RF model.
The optimized conditions of the hyperparameters including the minimum number of samples
in each split (min_samples_split), the maximum number of features for the best split
(max_features), the minimum number of samples in each leaf (min_samples leaf), and the
number of boosted trees (n_estimators) were 2, 2, 1 and 300, consecutively. The corresponding
MSE values were 169.457 and 57.950; and R’ values were 0.802 and 0.932 for validation and
training phases, respectively. Consequently, the MSE values were 107.500 and 58.426; and R’
values were 0.867 and 0.932 for test and total train phases, respectively, representing a
remarkable strength of prediction equals to 86.7% in estimation of photocatalytic degradation
of PFOA over different photocatalysts.

Considering the test phase, the fitting situations of the test dataset are illustrated in Fig. 3
where the promising strength of prediction obtained by RF model can be evidenced. Figure 3(b)
depicts the MSEs of both cross-validation and training phases versus epoch for the model
developed by RF. It is noteworthy that similar to the model developed by GBM, a decreasing
trend is observed by increasing epochs in both phases. Furthermore, any significant overfitting
is not evidenced by the model obtained by RF. Although both phases follow similar patterns,
their difference became smaller at sufficiently high epochs (>600) where the MSEs became

stable. These findings clearly signify an acceptable outcome for the developed model by RF.
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PFOA degradation Learning curve for RF
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Figure 3. (a) Coefficient of correlation (in test phase), (b) learning curve, and (c) strength of

prediction (in test phase) of the model developed by RF.

3.5. Evaluation of variable importance

PVI approach was employed to evaluate the relative importance of all variables in the three
models developed by AdaBoost, GBM and RF. As presented in Fig. 4, the relative importance
values of variables are highly dependent on the methods of modeling. In addition, variables are

of significantly different importance in each model.
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by (a) AdaBoost, (b) GBM, and (c) RF.
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3.5.1. Light irradiation time
Among all variables, the light irradiation time showed the most significant effect on the
photocatalytic degradation of PFOA in the AdaBoost, GBM, and RF models. The results are
consistent with the experimental findings. For instance, in studying the photocatalytic
degradation of PFOA using TiO>-MWCNT (mass ratio 2:1) composite catalyst (1.6 g/L), initial
pH of 5, and initial PFOA concentration of 30 mg/LP! Song et al. (2012) reported
approximately 34%, 55%, 67%, 74%, 75%, 80%, 83% and 85% degradation after 1 h, 2 h, 3 h,
4 h,5h, 6 h,7hand 8 h, respectively. It is obvious that increasing irradiation time enhances
the degradation efficiency of PFOA though at varying degrees. Notably, a remarkable
degradation efficiency of 34% was observed after just 1 h. When it comes to the last interval,
increasing irradiation time from 7 h to 8 h has slightly improved the degradation efficiency
from 83% to 85%. Such a remarkable increase of degradation efficiency between the first and
last intervals signifies the crucial importance of irradiation time on PFOA photocatalytic
degradation. In addition, increasing irradiation time from 1 h to 8 h drastically enhanced the
efficiency of PFOA decomposition from 34% to 85%. The photocatalytic process undergoes
some sequential steps in the liquid phase as follows:!"]
i.  transfer of pollutants to the surface of semiconductor material,
ii.  pollutants adsorption on the surface of photo-activated semiconducting material,
iii.  photogeneration of ROSs such as hydroxyl radicals, followed by the photodegradation
of organic pollutants,
iv.  products/intermediates desorption from the surface of semiconductor material, and
v.  transfer of the final products/intermediates into the liquid phase.
It is notable that the rates of these steps change significantly at different irradiation times

which highly affects the degradation efficiency of organic pollutants. Overall, among all the
variables, irradiation time can play the most important role in the photocatalytic degradation of

PFOA which is consistent with the results obtained by the AdaBoost, GBM, and RF models.
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3.5.2. Type of catalyst

The type of catalyst is another major variable that highly affects PFOA photocatalysis, which
could be even more important than that of irradiation time. Although there are various kinds of
semiconductors, only a few of which could be highly efficient for PFOA photocatalytic
degradation. In other words, the effect of irradiation time on PFOA degradation efficiency is
high on the condition of using an appropriate photocatalyst. Otherwise, a negligible effect is
expected. For instance, Li et al. (2012) have assessed the photocatalytic degradation of PFOA

[12]' As shown in Fig. 5(a),

over both TiO; and In,O3; under similar experimental conditions.
unlike In2O3, a negligible efficiency was observed for TiO2 whereas increasing irradiation time
did not affect the degree of degradation significantly. Although TiO; is the most commonly
studied catalyst for the degradation of organic pollutants, it has not exhibited high
photocatalytic activities for PFOA decomposition.!!’!?] On the other hand, other catalysts
including In,O3 and Ga;Os; has shown promising efficiencies for such a purpose.[!!:12:2¢]
Promising activity of Ga>Os-based semiconductors for the photocatalytic remediation of PFOA
has been attributed to their high energy sustainability and oxidizing potential.l’!]

Apart from the oxidizing potential, which is related to the position of valence and
conduction bands of the semiconducting material, surface properties of the catalyst are among
key parameters affecting PFOA degradation efficacy. The schematic illustration of adsorption
of PFOA on the surface of TiO> and In,03 is shown in Fig. 5(b). In the case of In,O3;, PFOA
strongly coordinates to its surface, in either bridging or bidentate modes, which leads to the
vertical array of PFOA chain along with a good order on In2O3. As per TiOg, a tilted array is
observed originated from surface binging between TiO2 and the carboxylate group of PFOA.
Thus, unlike TiO2, the inner CF> groups of PFOA may interact rarely with surface of In2Os. In
addition, the bidentate mode between InoO3 and PFOA facilitates the transfer of electrons from

PFOA to the holes (in In2O3) which are responsible for superior efficacy of In2O3 than TiO> for

photocatalytic decomposition of PFOA.!?]
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Figure 5. (a) Comparison of the photocatalytic activity of InoO3 and TiO> for PFOA
decomposition. Reproduced with permission from .12 Copyright © 2012, Li et al., ACS
Publications. (b) Schematic illustration of adsorption of PFOA on the surface of TiO2 and In20s.
Reproduced with permission from .['?! Copyright © 2012, Li et al., ACS Publications. (c) Effect
of various morphologies of In,O3 on the photocatalytic degradation of PFOA. Reproduced with
permission from .1'!J Copyright © 2013, Li et al., Elsevier. (d) Effect of various morphologies
of Ga,Os on the photocatalytic degradation of PFOA. Reproduced with permission from .['4]
Copyright © 2013, Shao et al., Elsevier. (¢) In2O3 microspheres. Reproduced with permission
from .['") Copyright © 2013, Li et al., Elsevier. (f) InoO; nanocubes. Reproduced with
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permission from 'l Copyright © 2013, Li et al., Elsevier. (g) In.O3 nanoplates. Reproduced
with permission from .['!! Copyright © 2013, Li et al., Elsevier. and (h) Sheaf-like Ga>Os

nanostructures. Reproduced with permission from .['* Copyright © 2013, Shao et al., Elsevier.

Moreover, the morphology of the catalysts could remarkably affect their performance in
photocatalysis. Li et al. (2013) used nanostructured In,O3 with various morphologies including
nanoplates, nanocubes, and porous microsphere for photocatalytic decomposition of PFOA.!!I
As shown in Fig. 5(c), the efficacy of InoO3 highly depends on its morphology. Shao et al.
(2013) also evaluated the important effects of morphology on the photocatalytic decomposition
of PFOA over Ga;03, as shown in Fig. 5(d). The presence of a large number of nanopores along
with the higher surface area of sheaf-like Ga,0O3 than that of commercial Ga>O3 resulted in the
higher efficacy of sheaf-like Ga;Os than that of commercial Ga>Os. Notably, enlarged surface
area could increase the reaction centers and provides more adsorption.['* Various morphologies
of InpO3 microspheres, InoO3 nanocubes, InoO3 nanoplates, and sheaf-like nanostructured
Gay03 are shown in Fig. 5(e-h). Various morphologies not only result in different specific
surface areas, but also influence the light adsorption of catalysts which can significantly affect
their efficiencies in photocatalysis. For instance, the improved absorption of scattered radiation
or the reduced loss of photons in solution led to the higher efficiency of titania nanotubes with
3D structures than those with planar arrays.*¥

The recombination rate of photo-generated electron-hole pairs is another important factor
which markedly influences the efficiency of PFOA photodecomposition. Generally, the lower
the recombination rate, the higher the efficiency is expected. The production of composites,
loading by metallic particles, and doping are among main methods which can highly reduce the
recombination rate of charge carriers. For instance, Cu- and Fe-loaded TiO: catalysts
significantly increased the decomposition efficiency of PFOA to 91% and 69%, respectively,

compared with only 14% for unloaded TiO,.[*"!
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Considering several aspects including nature of the catalyst (position of valence and
conduction bands), surface properties, morphology, specific surface area, pore size,
recombination rate of charge carriers and photo-adsorption ability, it is obvious that catalyst
type is one of the most crucial parameters affecting the photocatalytic decomposition

percentage of PFOA. This finding is successfully confirmed by the GBM model.

3.5.3. Other variables
Tang et al. (2021) have evaluated the effects of various parameters including pH, irradiation
intensity, reaction temperature, initial concentration of PFOA, and catalyst dosage on the
photocatalytic decomposition of PFOA over different catalysts including CeO2, NiAl-LDHs,
and CeO2@NiAl-LDHs composites. Among all the variable, the greatest effect has been
observed for catalyst dosage, pH, and irradiation intensity./*’] As shown in Fig. 4(b), catalyst
dosage, pH, and irradiation intensity are the most effective parameters after irradiation time and
catalyst type which clearly confirm the high accuracy of the model developed by GBM in
estimating the photocatalytic degradation of PFOA. It is noteworthy that the dosage of catalyst
and initial concentration of pollutant can highly affect decomposition of organic pollutants,
though at varying degrees, since the rate of the five sequential steps in photocatalysis is strongly
related to these variables. The initial solution pH is also of high importance since it strongly
affects the adsorption of PFOA on the surface of catalyst. However, its effect is highly related
to the type of catalyst. For instance, the optimal pH value was reported to be pH 9 (among pH
3,5,7,9, 11) for CeO2, NiAl-LDHs and CeO>@NiAl-LDHs composites,'** and pH 3 for Ga,0s3
(among 3, 5, 7, 10).[2]

The higher the irradiation intensity, the greater the degradation efficiency is expected.
Moreover, the photo-adsorption ability of catalysts is strongly dependent on the wavelength.
Therefore, the source of light, in terms of either intensity or wavelength, can remarkably affect

the photocatalytic decomposition of PFOA. In addition to the source of light, oxidizing agents
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(i.e. PMS, APS and NaPS) significantly increase the photocatalytic degradation of PFOA.[2>-2]
Such relative importance of these variables is appropriately demonstrated by the developed
GBM model.

Solution temperature is also another major variable affecting the decomposition of PFOA.
It should be taken into account that solution temperature has been set at room temperature, in
the overwhelming majority of photocatalytic experiments. The main reason might be the
challenges associated with increasing or decreasing temperature. On the one hand, increasing
temperature might result in evaporation of water. On the other hand, decreasing temperature
necessitates using cooling facilities. Overall, photocatalytic experiments have been mainly
carried out in a limited range of solution temperature. Furthermore, the maximum degradation
efficiency of PFOA has been observed at room temperature in some cases.!>>*¢! However, it
highly depends on the type of catalyst since Tang et al. (2021) reported higher decomposition

s.123] Considering the limited temperature range used for

efficiencies at higher temperature
evaluation of the temperature effect on the decomposition of PFOA, the minimal relative

importance of variables could be devoted to solution temperature which is evidenced by the

GBM model (Fig. 4(b)).

3.6. Model comparison

The strengths of the models developed by AdaBoost, GBM, and RF in predicting the
photocatalytic decomposition of PFOA were evaluated by different statistical indices (Table 3).
Compared with the model developed by AdaBoost, those developed by GBM and RF showed
higher prediction strengths in term of R?. In terms of MAE and MSE, the model developed by
AdaBoost showed more errors than those developed by GBM and RF. Overall, considering
both error values and R’, the AdaBoost model showed a much lower performance than RF and
GBM models. Notably, both RF and GBM models showed approximately similar performances

in predicting the photocatalytic degradation of PFOA over various photocatalysts. The
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application of several ML algorithms in estimating the photocatalytic degradation of different
organic pollutants is provided in Table 3. As evident, the number of datapoints in this research
is remarkably more than in the other studies demonstrating the diversity of the considered
experimental conditions in this study. As a result, the prediction strengths of the GBM and RF
models in this study are similar to those by using other models for estimating the photocatalytic
degradation of different organic pollutants. The insignificant differences between the prediction
strengths of current models, i.e. GBM and RF, and the models used for other applications could
be attributed to the nature of data, e.g. diversity of photocatalysts, number and type of inputs,
and type of the algorithms. Notably, different algorithms could yield different performances in

various applications.*6-6%]
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Table 3. Comparing the prediction strengths of models from ML algorithms for photocatalytic degradation of different organic pollutants.

Model Pollutant Statistical indices Number of data Reference
R? MAE MSE RMSE

CGCNN-MF-ANN Methylene Blue - 0.286 - - 67 [72]
CGCNN-MF-ANN Rhodamine B - 0.338 - - 50 [72]
CGCNN-MF-ANN Rose Bengal - 0.095 - - 33 [72]
CGCNN-MF-ANN Toluidine Blue - 0.127 - - 31 [72]
CGCNN-MF-ANN Azure B - 0.142 - - 31 [72]
CGCNN-MF-ANN Carmine Indigo - 0.275 - - 22 [72]
CGCNN-MF-ANN Phenoxyacetic acid - 0.113 - - 20 [72]
CatBoost Tetracycline 0.989 - - 3.164 374 [33]
LightGBM Tetracycline 0.980 - - 4.190 374 [33]
XGBoost Tetracycline 0.984 - - 3.717 374 [33]
AdaBoost Tetracycline 0.981 - - 4.086 374 [33]
AdaBoost PFOA 0.574 16.480  388.369 19.707 1343 This research
GBDT Tetracycline 0.981 - - 4.112 374 [33]
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Extra Tree

DT

RF

RF

GBM

Tetracycline
Tetracycline
Tetracycline
PFOA

PFOA

0.978

0.981

0.979

0.867

0.878

6.796

6.009

107.500

106.660

4.378

4.058

4.341

10.368

10.328

374

374

374

1343

1343

[33]

[33]

[33]

This research

This research

CGCNN-MF-ANN: crystal graph convolutional neural network-molecular fingerprint-artificial neural network; RMSE: root mean squared error.
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4. Conclusions

The prediction of the photocatalytic degradation of PFOA as an emerging persistent organic
pollutant is of great importance. Seven ML processes were pre-screened for such a purpose,
among which AdaBoost, RF and GBM showed more promising performances considering
statistical criteria including MSE, MAE and R’ values. Being optimized by grid search, the
models developed by RF and GBM showed superior performances than that developed by
AdaBoost in predicting the photocatalytic decomposition of PFOA. Considering the relative
importance of process variables evaluated by PVI, the GMB model resulted in better outcomes
than RF model with the light irradiation time, type of catalyst, dosage of catalyst, solution pH,
irradiation intensity, initial PFOA concentration, oxidizing agents (PMS, APS, and NaPS),
irradiation wavelength, and solution temperature as the most effective process variables in

decreasing order.
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