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Abstract. Multivariate time series classification is crucial for various
applications such as activity recognition, disease diagnosis, and brain-
computer interfaces. Deep learning methods have recently achieved promis-
ing performance thanks to their powerful representation learning capac-
ity. However, existing deep learning-based classifiers rely solely on tem-
poral information while disregarding clues from the frequency perspec-
tive. In this regard, we propose a novel method for classifying multivari-
ate time series leveraging both temporal and frequency information. We
first apply Short-Time Fourier Transform (STFT) to transform time se-
ries into spectrograms, which contain a 2D representation of frequency
components and their temporal positions. In particular, for each vari-
able, we generate spectrograms with varying frequencies and temporal
resolutions under different window sizes. The transformation essentially
adds a new modality to 1D time series and converts the multivariate
time series classification into a multi-modality data classification task,
making it possible to bring powerful backbones from computer vision
fields to solve the time series classification problem. We then construct
a dual-stream network based on the ResNet architecture that takes in
both 1D and 2D representations for accurate multivariate time series
classification. Our extensive experiments on 30 public datasets show our
method outperforms multiple competitive state-of-the-art baselines.

Keywords: Multivariate time series classification · multimodal learning
· deep learning

1 Introduction

Multivariate time series is a type of data that exists across multiple domains
and have broad applications in human activity recognition [40], heart disease
diagnosis [21], and brain-computer interfaces [5]. A typical multivariate time se-
ries contains a sequence of data points at regular time intervals, where values of
multiple variables or measurements from multiple sensors exist at the same time
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points. Compared with traditional univariate time series classification, multivari-
ate time series classification is inherently more challenging due to the temporal
variations and correlations among multiple variables. It has thus attracted the
increasing attention of researchers as a sheer amount of time series data are
collected by sensors in the era of Industry 4.0 [28].

While traditional methods for multivariate time series classification have been
based on statistical or machine learning methods, deep learning-based methods,
represented by Long Short-Term Memory (LSTM) [14], Inception-time [9], and
Time Series Transformer (TST) [42] have gained prevalence recently thanks to
their outstanding capability to extract effective features and learn representation
in complex scenarios. Until now, all the existing approaches have been focusing
on the temporal information of multivariate time series data while disregarding
the underlying frequency information, which is proven invaluable in many do-
mains like signal processing [23]. Intuitively, real-world multivariate time series
data often exhibit periodicity that is challenging to detect and model from a
purely temporal perspective. This highlights the necessity of incorporating fre-
quency information into the classifier to model and classify multivariate time
series data accurately. All the above inspires us to develop a novel approach
that can leverage temporal and frequency information comprehensively for more
accurate multivariate time series classification.

Existing methods that extract frequency information from time series data
generally aim for time series forecasting, represented by ETSformer [35] and
COST [34]. These methods are commonly based on Fourier Transform [2], which
decomposes time series into a set of sine functions representing different frequen-
cies, with the amplitude of each sine function indicating the intensities of the
frequency components. Fourier Transform, however, can only observe time series’
global frequency components without their temporal positions, resulting in insuf-
ficient frequency information that limits the accuracy of multivariate time series
classification. Therefore, it calls for new approaches that can incorporate more
comprehensive frequency information to improve classification performance.

In light of the above, we aim to classify multivariate time series sequences
by leveraging both temporal and frequency information. Specifically, we adopt
the Short-Time Fourier Transform (STFT) [11] to address the limitations of the
Fourier Transform. STFT divides time series into overlapping segments, applies
a Fourier transform to each segment, and finally concatenates the resulting 2D
frequency domain representations to provide more comprehensive information
that covers both the frequency components and their temporal positions. In
particular, we use three different window sizes to generate spectrograms for each
variable; these spectrograms carry multi-resolution frequency information that
reflects multi-scale temporal patterns of time series which is crucial for modeling
time series [3]. Through the above transformation, we create a new data modality
and transform the time series classification task into a multi-modality classifica-
tion task. This further allows us to bring computer vision backbones into time
series classification, which have shown effectiveness in exploiting 2D representa-
tions [36]. We further construct a dual-stream architecture based on ResNet [13],
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a widely used computer vision method, to leverage the power of both 2D repre-
sentations (with frequency information) and 1D representations (with temporal
information) of time series. The combination of 2D and 1D representations en-
ables us to classify time series effectively, demonstrated by our proposed method
consistently outperforming state-of-the-art baselines on 30 public multivariate
time series datasets.

In a nutshell, we make the following contributions in this paper:

– We employ Short-Time Fourier Transform (STFT) with varying window
sizes to generate 2D representations containing frequency components and
corresponding temporal positions at multiple resolutions.

– We propose a dual-stream architecture based on ResNet to leverage both
temporal and frequency information. A fully-connected layer with softmax
function takes the fusion of the output feature maps from two streams to
map them to a probability distribution of classes.

– We conducted extensive experiments on 30 public datasets and demonstrated
the superior performance of our method to state-of-the-art baselines. We of-
fer further insights by investigating convolutional backbone selection sensi-
tivity, impact as a plugin, and ablation studies.

2 Related work

2.1 Traditional Machine Learning Methods

Statistical and traditional machine learning methods have been extensively em-
ployed for multivariate time series classification. Distance-based approaches, such
as k-Nearest Neighbors (KNN) [32] combined with Dynamic Time Warping
(DTW) [32], as well as feature-based methods, including Support Vector Ma-
chine (SVM) [43], TS-CHIEF [26], HIVE-COTE [19], and ROCKET [7], have
been used. However, these methods typically rely on manually-crafted features
and face difficulties in capturing complex relationships efficiently from high-
dimensional data [1].

2.2 Deep Learning Methods

Deep learning methods are prevalent for multivariate time series classification
due to the ability to capture high-dimensional non-linear relationships [17].
Convolutional Neural Networks (CNNs) [46, 20] are used to capture local tem-
poral variations, while variants include Inception-time [9], Attentional Gated
Res2Net [39], and OS-CNN [30]. As CNN lacks the ability to capture long-
range dependencies, Recurrent Neural Networks (RNNs) [27] that can memorize
the temporal patterns are used to classify multivariate time series, while vari-
ants include Long Short-Term Memory (LSTM) [14] and Gated Recurrent Unit
(GRU) [4]. Ensemble models of RNN and CNN such as LSTM-FCN [15] and
CNN-RNN Cascade model [38] incorporate both of them to exploit the CNN’s
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Fig. 1: The architecture of the proposed method. We use the time series with one
variable to illustrate our method for simplicity. We employ Short-Time Fourier
Transform with three different window sizes to generate a set of 2D spectro-
grams with multiple resolutions. We construct a dual-stream architecture based
on ResNet to leverage both 1D representations and 2D representations. In the
spectrogram stream, we use a 3D convolutional layer to fuse the spectrogram
information from the resolution perspective and feed the output to ResNet-18.
In the time series stream, we follow the architecture of ResNet-18 while replacing
the 2D convolutional kernels using 1D convolutional kernels to adapt the shape
of time series data. Finally, the output feature maps from two streams are con-
catenated (C in this Figure means concatenation) and fed into a fully-connected
layer to map the output to the probability distribution of the classes.

ability to harness local temporal information and RNN’s ability to leverage long-
range dependencies for multivariate time series classification. Transformer [33]
is a recently proposed method in natural language processing [8] that realizes
parallel computation and multi-scale temporal information utilization, making
it competitive on various tasks. Variants that are designed for multivariate time
series classification include Time Series Transformer (TST) [42], Gated Trans-
former [22], and AutoTransformers [24]. However, all the existing methods for
multivariate time series classification only focus on temporal information, ignor-
ing the time series’s inherent frequency information, which limits the capacity
to classify various time series sequences.

3 Methodology

The proposed method is based on a dual-stream architecture consisting of a
spectrogram stream and a time series stream, as illustrated in Fig. 1. We first
implement the STFT using three different window sizes to generate a set of 2D
spectrograms with varying temporal and frequency resolutions. Following this,
a 3D convolutional layer is utilized to fuse the resolution-wise information of the
spectrograms, while the output is fed into a ResNet-18 network to leverage 2D
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representations. Concurrently, the time series data is fed into a 1D ResNet-18
network that leverages 1D representations using 1D convolutional kernels. The
output feature maps of both streams are concatenated, and a fully-connected
layer with softmax function is applied to map the output to the probability
distribution of the classes. We elaborate on each component of the proposed
method in the following sections.

3.1 Short-Time Fourier Transform

Real-world time series data are typically sampled from continuous data streams
at specific sampling rates. In signal processing, the Discrete Fourier Transform
(DFT) is commonly used to extract frequency components from time series data,
which can be described as follows:

X(k) =

T−1∑
t=0

x(t)e−i2πkt/T (1)

where xt is the time series sequence, and t ∈ (0, T − 1), T is the length of
the time series. X(k) is the frequency component obtained after DFT, while
k is the index. However, the DFT lacks temporal position information of the
frequency components, resulting in insufficient frequency information. To address
this limitation, the Short-Time Fourier Transform (STFT) is performed, which
involves using a sliding window to divide a time series sequence into short time
intervals and performing the Fourier Transform on each interval to obtain the
frequency components and their temporal positions. The STFT can be described
as:

X(j, ω) =

L−1∑
t=0

x(t)w(j − t)e−iωt (2)

where x(t) represents the input time series in the time domain, w(j − t) repre-
sents truncating the time series x(t) with a window function in time to obtain the
short time interval x(t)w(j − t), L is the length of the window, j represents the
center position of the current window, and ω represents the frequency of interest.
In this case, STFT provides more sufficient frequency information including the
frequency components and their temporal positions compared with the Fourier
Transform. We applied the Fourier Transform and STFT to a sequence sampled
from the Handwriting dataset to illustrate the differences between the spectro-
grams obtained through the Fourier Transform and STFT, and the results are
shown in Figure 2. The STFT requires a balance between frequency and tempo-
ral resolutions, which presents a challenge in selecting an optimal window size.
A larger window size provides more precise frequency information but results
in poorer temporal resolution, while a smaller window size provides better tem-
poral resolution but less precise frequency information. We follow a traditional
signal processing approach [12] to address this issue, where the window size is
chosen based on the time series’s bandwidth. To select an appropriate window
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(a) Time Domain (b) Spectrogram generated
by Fourier Transform

(c) Spectrogram generated
by STFT

Fig. 2: The time domain of a time series sampled from the Handwriting dataset
and the spectrograms generated by the Fourier Transform and Short-Time
Fourier Transform (STFT). The spectrogram generated by the STFT provides
more comprehensive frequency information, including both the frequency com-
ponents and their temporal positions, in contrast to the spectrogram generated
by the Fourier Transform

size, we calculate the maximum bandwidth among all variables, which can be
described as:

Bandwidth n = ⌈fn
max − fn

min⌉
Bandwidth = max ( Bandwidth 0, Bandwidth 1, . . . , Bandwidth N )

(3)

where fn
max and fn

min are the maximum frequency and the minimum frequency
present in the time series’s nth variable, respectively, and N is the variable num-
ber. We then use three window sizes: the two, three, and four times the time
series’s frequency bandwidth, respectively, with an overlap of 50%, to gener-
ate three spectrograms with multi-level resolutions. For a time series sequence
x ∈ RN×T , where N is the variable number and T is the sequence length, the cor-
responding spectrogram generated by STFT is s ∈ RN×3×H×W where 3 means
three different window sizes that we use, and H and W are the spectrogram’s
height and width. In this way, we extract the frequency components and their
temporal positions from the time series and create a new data modality by con-
verting the 1D time series sequence into a set of 2D representations, enabling us
to borrow the powerful backbones from the computer vision field for leveraging
2D representation.

3.2 ResNet-18

We propose a dual-stream architecture based on ResNet [13] to leverage both the
2D representations in the spectrogram stream and the 1D representations in the
time series stream for representation learning. ResNet is a popular deep neural
network architecture that addresses the issue of vanishing gradients, which arises
when the gradients become too small to effectively update the weights during
backpropagation, particularly in very deep networks. This property has made it a
competitive backbone for various computer vision tasks, motivating us to adopt



Title Suppressed Due to Excessive Length 7

Fig. 3: The architecture of ResNet-18.

it in our approach. In the spectrogram stream, the sets of 2D representations
generated by the STFT are first fed into a 3D convolutional layer for resolution-
wise information fusion. This layer down-samples the input spectrograms from
the resolution perspective and generates a single 2D representation for each
variable. The calculation process can be described as:

y = W ∗ x+ b (4)

where x ∈ RN×3×H×W and y ∈ RN×H×W , and W and b are the convolutional
kernel and bias term, respectively.

The resulting 2D representation and the original 1D time series are then
fed into two separate neural networks, namely ResNet-18 and 1D ResNet-18,
respectively. The architecture of ResNet-18, illustrated in Figure 3, comprises
six residual blocks, each consisting of two convolutional layers with a kernel size
3× 3. The output feature maps are fed into an average pooling layer for down-
sampling from the spatial perspective, generating the latent vector of the input
feature maps. In the 1D ResNet-18, we follow the same architecture as ResNet-
18 but replace the 2D convolutional kernels with 1D convolutional kernels to
accommodate the shape of the 1D representations. This enables us to process
the time series data while retaining the advantages of ResNet-18’s architecture.
We then concatenate the output of the two streams and feed them into the
fully-connected layer with a softmax function to map them to the probability
distribution of the classes.

4 Experiments

4.1 Datasets

We evaluated our method using the UEA Time Series Classification Reposi-
tory [6], which contains 30 public multivariate time series datasets. These datasets
concern different domains and reflect diverse data characteristics in terms of se-
quence lengths and variable numbers, etc. All datasets had been preprocessed
and split into training and test sets. The detailed statistics of each dataset are
summarized in Table 1.

We further normalized them to zero mean and unit standard deviation and
applied zero paddings to ensure that each dataset contains sequences of the same
lengths.
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Table 1: Statistics of the 30 UEA datasets used in experimentation.
Dataset Train Cases Test Cases Dimensions Length Classes

ArticularyWordRecognition 275 300 9 144 25
AtrialFibrillation 15 15 2 640 3

BasicMotions 40 40 6 100 4
CharacterTrajectories 1,422 1,436 3 182 20

Cricket 108 72 6 1,197 12
DuckDuckGeese 60 40 1345 270 5

EigenWorms 128 131 6 17,984 5
Epilepsy 137 138 3 206 4

EthanolConcentration 261 263 3 1,751 4
ERing 30 30 4 65 6

FaceDetection 5,890 3,524 144 62 2
FingerMovements 316 100 28 50 2

HandMovementDirection 320 147 10 400 4
Handwriting 150 850 3 152 26
Heartbeat 204 205 61 405 2

JapaneseVowels 270 370 12 29 9
Libras 180 180 2 45 15
LSST 2,459 2,466 6 36 14

InsectWingbeat 30,000 20,000 200 78 10
MotorImagery 278 100 64 3,000 2

NATOPS 180 180 24 51 6
PenDigits 7,494 3,498 2 8 10
PEMS-SF 267 173 963 144 7
Phoneme 3,315 3,353 11 217 39

RacketSports 151 152 6 30 4
SelfRegulationSCP1 268 293 6 896 2
SelfRegulationSCP2 200 180 7 1,152 2
SpokenArabicDigits 6,599 2199 13 93 10

StandWalkJump 12 15 4 2,500 3
UWaveGestureLibrary 120 320 3 315 8

4.2 Baselines

We consider several popular machine learning methods and recently proposed
deep learning models as baselines. The selected competitive methods include
ROCKET [7], Time Series Transformer (TST) [42], ShapeNet [18], Dynamic
Time Warping (DTW), TS2Vec [41], MLSTM-FCN [15], OS-CNN [30], Tap-
Net [45], Temporal Neighborhood Coding (TNC) [31], andWEASEL+MUSE [25].

4.3 Model Configuration and Evaluation Metric

We trained our model for 500 training epochs using Adam [16] optimizer. The
learning rate is initialized to 0.001; it scales down with a coefficient of 0.1 every
50 epochs after the first 100 epochs. We repeated the training and test processes
five times and took the average of multiple runs as the final results to mitigate
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Table 2: Accuracy of different models on 30 benchmark datasets. The best perfor-
mance values are bolded, and the second-best performance values are underlined.

Dataset Ours WEASEL+MUSE TST ROCKET DTW TS2Vec MLSTM-FCN OS-CNN TapNet TNC ShapeNet

ArticularyWordRecognition 0.996 0.990 0.977 0.996 0.987 0.987 0.973 0.988 0.987 0.973 0.987
AtrialFibrillation 0.524 0.333 0.067 0.249 0.200 0.200 0.267 0.233 0.333 0.133 0.400

BasicMotions 1.000 1.000 0.975 0.990 0.975 0.975 0.950 1.000 1.000 0.975 1.000
CharacterTrajectories 0.997 0.990 0.975 0.967 0.989 0.995 0.985 0.998 0.997 0.967 0.980

Cricket 1.000 1.000 1.000 1.000 1.000 0.972 0.917 0.993 0.958 0.958 0.986
DuckDuckGeese 0.767 0.575 0.562 0.461 0.492 0.680 0.675 0.540 0.575 0.460 0.725

EigenWorms 0.897 0.890 0.748 0.863 0.618 0.847 0.504 0.414 0.489 0.840 0.878
Epilepsy 1.000 1.000 0.949 0.991 0.964 0.964 0.761 0.980 0.971 0.957 0.987

Ering 0.875 0.133 0.964 0.447 0.133 0.874 0.133 0.881 0.133 0.852 0.133
EthanolConcentration 0.476 0.430 0.326 0.452 0.323 0.308 0.373 0.240 0.323 0.297 0.312

FaceDetection 0.683 0.545 0.681 0.647 0.529 0.501 0.545 0.575 0.556 0.536 0.602
FingerMovements 0.601 0.490 0.560 0.553 0.530 0.480 0.580 0.568 0.530 0.470 0.580

HandMovementDirection 0.443 0.365 0.243 0.446 0.231 0.338 0.365 0.443 0.378 0.324 0.338
HandWriting 0.672 0.605 0.359 0.567 0.286 0.515 0.286 0.668 0.357 0.249 0.451

HeartBeat 0.863 0.727 0.776 0.717 0.717 0.515 0.663 0.489 0.751 0.746 0.756
JapaneseVowels 0.967 0.984 0.994 0.962 0.949 0.984 0.976 0.991 0.965 0.978 0.984

Libras 0.981 0.973 0.656 0.906 0.870 0.867 0.856 0.950 0.850 0.817 0.856
LSST 0.782 0.878 0.408 0.632 0.551 0.537 0.373 0.413 0.568 0.595 0.590

MotorImagery 0.632 0.590 0.500 0.531 0.500 0.510 0.510 0.535 0.590 0.500 0.610
NATOPS 0.941 0.500 0.850 0.885 0.883 0.928 0.889 0.968 0.939 0.911 0.883
PEMS-SF 0.932 0.870 0.919 0.751 0.711 0.682 0.699 0.760 0.751 0.699 0.751
PenDigits 0.991 0.968 0.560 0.996 0.977 0.989 0.978 0.985 0.980 0.979 0.977
Phoneme 0.287 0.190 0.085 0.284 0.151 0.233 0.110 0.299 0.175 0.207 0.298

RacketSports 0.934 0.190 0.809 0.928 0.803 0.855 0.803 0.877 0.868 0.776 0.882
SelfRegulationSCP1 0.961 0.934 0.925 0.908 0.775 0.812 0.874 0.835 0.652 0.799 0.782
SelfRegulationSCP2 0.738 0.710 0.589 0.533 0.539 0.578 0.472 0.532 0.550 0.550 0.578
SpokenArabicDigits 0.994 0.460 0.993 0.712 0.963 0.988 0.990 0.997 0.983 0.934 0.975

StandWalkJump 0.659 0.333 0.267 0.456 0.200 0.467 0.067 0.383 0.400 0.400 0.533
UWaveGestureLibrary 0.951 0.916 0.903 0.944 0.903 0.906 0.891 0.927 0.894 0.759 0.906

InsectWingBeat 0.697 0.163 0.105 0.168 0.105 0.466 0.167 0.667 0.208 0.469 0.250

Average Accuracy 0.808 0.658 0.658 0.698 0.628 0.698 0.621 0.704 0.657 0.670 0.699

Average Rank 1.57 4.93 6.63 4.93 7.83 6.17 7.77 4.77 6.07 8.00 4.83

the impact of randomized parameter initialization. We used dropout to avoid
possible overfitting. Training and testing are done on a single Nvidia GTX 3080
Ti.

We use accuracy, which is currently used by all baseline methods, as the
metric for comparison. We additionally use macro precision, recall, and F1-Score
in our parameter and ablation studies to gain further insights into our model’s
performance.

4.4 Comparison Results

The performance comparison results (shown in Table 2) reveal that our model
has demonstrated superior performance to all the baseline methods across a
wide range of experimental datasets. Specifically, our model achieved the best
results on 21 datasets, the second-best performance on six datasets, and the
third-best on two datasets out of 30 experimental datasets. It demonstrated
superior performance compared to all baselines, achieving a 14.7% increase in
average classification accuracy compared to the second-best method, OS-CNN,
and a 15.6% increase compared to the third-best method, ShapeNet. Further-
more, our model achieved an average rank of 1.57, outperforming the second-best
method, OS-CNN, which had an average rank of 4.77. Figure 4 shows the result
of the Wilcoxon signed-rank test (with a confidence level of 95%) on the base-
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Fig. 4: Critical Difference (CD) diagram of the selected baselines and our method
with a confidence level of 95%.

line methods’ performance, consistently showing that our method achieved the
highest classification performance among all the compared methods.

Traditional machine learning methods, including WEASEL+MUSE, DTW,
and ROCKET, are limited in handling such large datasets, reflected in their
inferior performance on datasets including InsectWingBeat and FaceDetection,
which contain 50,000 and 9,114 samples, respectively. Furthermore, existing deep
learning models often ignore the inherent frequency information in time series
data, which can be crucial for accurately classifying time series with significant
differences in the frequency domain rather than the time domain.

We attribute this improvement to two key factors. First, our method’s dual-
stream architecture effectively captures both temporal and frequency informa-
tion, enhancing its ability to discriminate time series sequences between differ-
ent classes. Second, by utilizing the Short-Time Fourier Transform (STFT), our
method leverages the frequency components and their temporal locations of the
time series to provide more comprehensive frequency information compared to
the Fourier Transform. Our results from the Wilcoxon signed-rank test, con-
ducted with a confidence level of 95%, further confirm that our method achieved
the best classification performance among all compared methods.

4.5 Convolutional Backbone Selection Sensitivity

We replaced the ResNet with other popular computer vision backbones includ-
ing ResNeXt [37], Res2Net [10], ResNeSt [44], and Inception [29] to explore the
impact of the backbone selection on the performance. We conducted experiments
on three datasets including DuckDuckGeese, HeartBeat, and HandWriting. The
results can be found in Table 3. The tested backbones have more complex ar-
chitectures and parameters compared to ResNet, leading to better performance
during the training phase but overfitting on the test sets. We believe that with
the increase of the dataset scale, implementing more complicated backbones may
enhance the classifier’s classification capacity. As most of the datasets we use con-
tain limited samples in the training set (fewer than 1000), we selected ResNet
as the optimal solution based on our evaluation of the performance metrics.
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Table 3: The Training and test results of different backbones from the computer
vision field. The best performance values are bolded.

Training Test

Dataset Models Accuracy Recall Precision F1-Score Accuracy Recall Precision F1-Score

DuckDuckGeese

ResNet 0.862 0.813 0.764 0.788 0.767 0.741 0.736 0.738
ResNeXt 0.866 0.809 0.866 0.837 0.673 0.645 0.639 0.642
Res2Net 0.894 0.815 0.827 0.821 0.639 0.613 0.632 0.622
ResNeSt 0.907 0.915 0.855 0.884 0.692 0.704 0.761 0.731
Inception 0.859 0.897 0.811 0.852 0.734 0.729 0.736 0.732

HeartBeat

ResNet 0.906 0.891 0.882 0.886 0.863 0.772 0.795 0.783
ResNeXt 0.916 0.902 0.914 0.908 0.741 0.726 0.719 0.722
Res2Net 0.931 0.919 0.922 0.920 0.714 0.678 0.669 0.673
ResNeSt 0.928 0.917 0.927 0.922 0.665 0.640 0.608 0.624
Inception 0.909 0.874 0.907 0.890 0.782 0.738 0.806 0.771

HandWriting

ResNet 0.735 0.702 0.744 0.722 0.672 0.654 0.661 0.657
ResNeXt 0.849 0.865 0.872 0.868 0.533 0.542 0.591 0.565
Res2Net 0.856 0.802 0.874 0.836 0.592 0.607 0.586 0.596
ResNeSt 0.857 0.886 0.883 0.884 0.557 0.573 0.605 0.589
Inception 0.764 0.753 0.773 0.763 0.597 0.612 0.596 0.604

Table 4: The experimental results when using our frequency stream with 2D
representations as a plugin. W/o means that the method does not contain the
spectrogram stream and vice versa. The best performance values are bolded.

Train Test

Dataset Method Accuracy Recall Precision F1-Score Accuracy Recall Precision F1-Score

EigenWorms

MLSTM-FCN (w/o) 0.587 0.574 0.624 0.598 0.504 0.519 0.479 0.498
MLSTM-FCN (w) 0.721 0.714 0.677 0.695 0.629 0.624 0.595 0.609
TST (w/o) 0.839 0.832 0.816 0.824 0.748 0.791 0.778 0.784
TST (w) 0.882 0.893 0.885 0.889 0.826 0.828 0.819 0.823

RacketSports

MLSTM-FCN (w/o) 0.828 0.779 0.833 0.805 0.803 0.709 0.702 0.705
MLSTM-FCN (w) 0.843 0.811 0.805 0.808 0.814 0.727 0.751 0.739
TST (w/o) 0.854 0.819 0.822 0.820 0.809 0.712 0.705 0.708
TST (w) 0.894 0.833 0.882 0.857 0.824 0.762 0.793 0.777

4.6 Impact of Our Spectrogram Stream as a Plugin

We incorporate the spectrogram stream as a plugin into the existing architec-
tures including TST [42] and MLSTM-FCN [15] to evaluate the effectiveness of
the 2D representations with frequency information in improving the performance
of the existing methods. The outcomes of our investigation, as presented in Ta-
ble 4, indicate a significant improvement in the average classification accuracy
and the F1-Score of both methods during both the training and testing phases.
Specifically, we observed an increase of 8.6% and 7.3% in the average classifi-
cation accuracy and F1-Score, respectively, during the training phase, and an
increase of 9.6% and 10.4% in the average classification accuracy and F1-Score,
respectively, during the test phase. These findings suggest that the utilization of
2D representations with frequency information can enhance the performance of
existing methods.
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Table 5: Ablation test for our method. Fourier Transform means we use Fourier
Transform instead of STFT to extract frequency information. Single window size
means we only use one window size (three times the bandwidth) to generate the
spectrogram. Time Series and Spectrogram Stream only mean using information
from one stream separately instead of both to classify time series. The best
performance values are bolded.

Dataset Model Accuracy Precision Recall F1-Score

DuckDuckGeese

Fourier Transform 0.675 0.669 0.688 0.678
Single Window Size 0.689 0.707 0.725 0.716
Time Series Stream Only 0.632 0.619 0.661 0.639
Spectrogram Stream Only 0.718 0.711 0.724 0.717
Ours 0.767 0.741 0.736 0.738

FaceDetection

Fourier Transform 0.575 0.602 0.552 0.576
Single Window Size 0.627 0.585 0.673 0.626
Time Series Stream Only 0.630 0.615 0.622 0.618
Spectrogram Stream Only 0.647 0.651 0.642 0.646
Ours 0.681 0.622 0.716 0.666

PEMS-SF

Fourier Transform 0.751 0.643 0.637 0.640
Single Window Size 0.794 0.718 0.698 0.708
Time Series Stream Only 0.819 0.822 0.803 0.812
Spectrogram Stream Only 0.874 0.856 0.877 0.866
Ours 0.932 0.957 0.889 0.922

4.7 Ablation Study

We conducted ablation studies on three datasets, including DuckDuckGeese,
FaceDetection, and PEMS-SF, to investigate the effectiveness of individual com-
ponents of our proposed method. We compared the performance of the method
with the use of Fourier Transform instead of STFT to extract frequency informa-
tion. Besides, for STFT, we use a single window size (three times the bandwidth)
for spectrogram generation instead of three window sizes. Additionally, we tried
to use information from one single stream (either the time series or spectrogram
stream) individually to classify time series instead of both. The experimental
results are summarized in Table 5.

Our analysis reveals that each component improves the classifier’s perfor-
mance. Notably, STFT demonstrates a more significant impact on the classifi-
cation accuracy of the model on two of the datasets. This finding implies that
the utilization of 2D representations with frequency information, provided by
STFT, is crucial for enhancing the classification capacity of the model.

5 Conclusion and Future Work

This study proposes a novel dual-stream architecture for accurately classifying
multivariate time series sequences. The method leverages the inherent frequency
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information in the time series data by implementing STFT to obtain the fre-
quency components and their temporal positions. We construct a dual-stream
architecture based on ResNet, which can leverage both 1D and 2D represen-
tations effectively to classify multivariate time series sequences. We evaluate
the proposed model on diverse datasets containing sequences of various lengths
and variable numbers. The experimental results show that our method outper-
forms several baseline and state-of-the-art methods by a significant margin. We
also conduct a thorough investigation of the effect of different components and
settings on the model’s performance. Our future work includes exploring the
interpretability of our proposed method through visualization technologies for
convolutional neural networks from the computer vision field. Additionally, we
plan to extend our work to more time series-related tasks, such as time series
imputation, forecasting, and abnormal detection.
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