A Theorem Prover for Quantum Hoare Logic and Its Applications

Full metadata record
Files in This Item:
Filename Description Size
1601.03835v1.pdfPublished Version211.69 kB
Adobe PDF
Quantum Hoare Logic (QHL) was introduced in Ying's work to specify and reason about quantum programs. In this paper, we implement a theorem prover for QHL based on Isabelle/HOL. By applying the theorem prover, verifying a quantum program against a specification is transformed equivalently into an order relation between matrices. Due to the limitation of Isabelle/HOL, the calculation of the order relation is solved by calling an outside oracle written in Python. To the best of our knowledge, this is the first theorem prover for quantum programs. To demonstrate its power, the correctness of two well-known quantum algorithms, i.e., Grover Quantum Search and Quantum Phase Estimation (the key step in Shor's quantum algorithm of factoring in polynomial time) are proved using the theorem prover. These are the first mechanized proofs for both of them.
Please use this identifier to cite or link to this item: