Unsupervised 2D dimensionality reduction with adaptive structure learning

Publication Type:
Journal Article
Neural Computation, 2017, 29 (5), pp. 1352 - 1374
Issue Date:
Full metadata record
© 2017 Massachusetts Institute of Technology. In recent years, unsupervised two-dimensional (2D) dimensionality reduction methods for unlabeled large-scale data have made progress. However, performance of these degrades when the learning of similarity matrix is at the beginning of the dimensionality reduction process.Asimilarity matrix is used to reveal the underlying geometry structure of data in unsupervised dimensionality reduction methods. Because of noise data, it is difficult to learn the optimal similarity matrix. In this letter, we propose a new dimensionality reduction model for 2D image matrices: unsupervised 2D dimensionality reductionwith adaptive structure learning (DRASL). Instead of using a predetermined similarity matrix to characterize the underlying geometry structure of the original2Dimage space, our proposed approach involves the learning of a similarity matrix in the procedure of dimensionality reduction. To realize a desirable neighbors assignment after dimensionality reduction, we add a constraint to our model such that there are exact c connected components in the final subspace. To accomplish these goals, we propose a unified objective function to integrate dimensionality reduction, the learning of the similarity matrix, and the adaptive learning of neighbors assignment into it. An iterative optimization algorithm is proposed to solve the objective function. We compare the proposed method with several 2D unsupervised dimensionality methods. K-means is used to evaluate the clustering performance. We conduct extensive experiments on Coil20, ATandT, FERET, USPS, and Yale data sets to verify the effectiveness of our proposed method.
Please use this identifier to cite or link to this item: