A closed-form solution for column-supported embankments with geosynthetic reinforcement

Publication Type:
Journal Article
Citation:
Geotextiles and Geomembranes, 2019, 47 (3), pp. 389 - 401
Issue Date:
2019-06-01
Full metadata record
© 2019 Elsevier Ltd Soil arching effect results from the non-uniform stiffness in a geosynthetic-reinforced and column-supported embankment system. However, most theoretical models ignore the impact of modulus difference on the calculation of load transfer. In this study, a generalized mathematical model is presented to investigate the soil arching effect, with consideration given to the modulus ratio between columns and the surrounding soil. For simplification, a cylindrical unit cell is drawn to study the deformation compatibility among embankment fills, geosynthetics, columns, and subsoils. A deformed shape function is introduced to describe the relationship between the column and the adjacent soil. The measured data gained from a full-scale test are applied to demonstrate the application of this model. In the parametric study, certain influencing factors, such as column spacing, column length, embankment height, modulus ratio, and tensile strength of geosynthetic reinforcement, are analyzed to investigate the performance of the embankment system. This demonstrates that the inclusion of a geosynthetic reinforcement or enlargement of the modulus ratio can increase the load transfer efficiency. When enhancing the embankment height or applying an additional loading, the height of the load transfer platform tends to be reduced. However, a relatively long column has little impact on the load transfer platform.
Please use this identifier to cite or link to this item: