A lazy bagging approach to classification

Publication Type:
Journal Article
Pattern Recognition, 2008, 41 (10), pp. 2980 - 2992
Issue Date:
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2011000593OK.pdf1.14 MB
Adobe PDF
In this paper, we propose lazy bagging (LB), which builds bootstrap replicate bags based on the characteristics of test instances. Upon receiving a test instance xk, LB trims bootstrap bags by taking into consideration xk's nearest neighbors in the training data. Our hypothesis is that an unlabeled instance's nearest neighbors provide valuable information to enhance local learning and generate a classifier with refined decision boundaries emphasizing the test instance's surrounding region. In particular, by taking full advantage of xk's nearest neighbors, classifiers are able to reduce classification bias and variance when classifying xk. As a result, LB, which is built on these classifiers, can significantly reduce classification error, compared with the traditional bagging (TB) approach. To investigate LB's performance, we first use carefully designed synthetic data sets to gain insight into why LB works and under which conditions it can outperform TB. We then test LB against four rival algorithms on a large suite of 35 real-world benchmark data sets using a variety of statistical tests. Empirical results confirm that LB can statistically significantly outperform alternative methods in terms of reducing classification error. © 2008 Elsevier Ltd. All rights reserved.
Please use this identifier to cite or link to this item: