Currency derivatives under a minimal market model with random scaling

Publication Type:
Journal Article
International Journal of Theoretical and Applied Finance, 2005, 8 (8), pp. 1157 - 1177
Issue Date:
Filename Description Size
Thumbnail2005001926.pdf991.12 kB
Adobe PDF
Full metadata record
This paper uses an alternative, parsimonious stochastic volatility model to describe the dynamics of a currency market for the pricing and hedging of derivatives. Time transformed squared Bessel processes are the basic driving factors of the minimal market model. The time transformation is characterized by a random scaling, which provides for realistic exchange rate dynamics. The pricing of standard European options is studied. In particular, it is shown that the model produces implied volatility surfaces that are typically observed in real markets. © World Scientific Publishing Company.
Please use this identifier to cite or link to this item: