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Abstract—In this paper, we propose a framework that uses
Brain-Computer Interface (BCI) technology to create human-like
avatars for user-driven Metaverse applications. This framework
is designed to work efficiently with fast wireless connectivity and
high computing demand, making it ideal for future infrastruc-
tures, e.g., 5G and beyond. The Metaverse system uses brain
signals sent through wireless channels to create intelligent digital
avatars that can provide helpful recommendations and assist in
user-driven applications. To eliminate the computational burden
on the user equipments, the computational tasks and resource
allocation decisions are shifted to the centralized base station. As
a result, our framework involves solving a mixed decision-making
and classification problem. The goal is for the base station to
efficiently allocate its computing and radio resources to users,
as well as classify their brain signals. To this end, we develop a
hybrid training algorithm that uses the latest advancements in
deep reinforcement learning to solve the problem. Our algorithm
involves three deep neural networks working together to handle
both decision-making and classification tasks. Simulation results
indicate that our framework can effectively manage system
resources while accurately classifying users’ brain signals.

Index Terms—Metaverse, brain-computer interface, resource
allocation, machine learning.

I. INTRODUCTION

Recent years have witnessed the fast development of user-
driven applications with high data rate demand and tremendous
computing requirements such as virtual reality (VR) streaming
and gaming [1]. The future 5G and 6G networks are envisioned
to provide fast network connectivity and intelligent user-driven
services for such VR applications. Toward this convergence
of faster connectivity and user-driven applications, the re-
cently emerged Metaverse concept has attracted enormous
attention from both academia and industry [2]. Moreover, the
development of the Metaverse has been facilitated by recent
technological breakthroughs such as VR, blockchain, AI, 5G,
and beyond [2]. In Metaverse, the users can interact with
Metaverse environment and other users through their avatars.
Despite the growing attention from industry and academia,
Metaverse is still in its infancy. With virtual avatars as the
human embodiments in Metaverse, the avatars can be poten-
tially reflected user individual characters. Although Metaverse
inherits visual components from virtual reality and augmented
reality platforms, the intelligence of such avatars is still an
uncovered topic.

Toward the effort of making intelligent digital avatars for
Metaverse, a research field evolves at the intersection of
neuroscience and virtual reality. The idea is to make digital
avatars more intelligent and more individual by using biolog-

ical signals from humans. Specifically, using brain signals is
one of the most promising methods with a long history in the
development of Brain-Computer Interface (BCI) [3]. In [4],
an imagined speech communication system toward Metaverse
is proposed. The electroencephalography (EEG) signals of
users are analyzed to predict the imagined words. The authors
also propose a prototype for a virtual assistant avatar in a
smart home as a potential Metaverse application. There are
several approaches toward BCI-enabled VR applications in
the literature. In [5], the authors propose BCI-based methods
for navigation tasks in a VR environment. Extension of such
BCI-based methods can be virtual autonomous driving [6]
and adaptive VR environment rendering [3]. Although the
aforementioned works achieve adequate performance for VR
applications, the step toward Metaverse which usually involves
tremendous computational demand and complex interactions
between multiple human-like avatars and is still a big research
gap. For example, the wired connections between the BCI
devices and computing units in conventional settings in [3],
[4], and [6] might not be always feasible and available due
to coverage and mobility problems [1]. Thus, the integration
of BCI into cellular-based systems is a promising solution for
future Metaverse applications.

To this end, in our paper, we first propose an innovative
framework in which Metaverse users with integrated VR-BCI
headsets can immerse VR applications while sending BCI
signals toward uplink wireless channels. As such, the base
station (BS) can create intelligent human-like avatars to further
enhance user Quality-of-Experience (QoE). In particular, our
proposed framework involves a mixed decision-making and
classification problem. The decision-making problem requires
the resource allocation policy to be derived so that the VR
delay of the users is minimized. The classification problem
requires highly accurate predictions of brain signals for fa-
cilitating the creation of intelligent digital avatars. As the
decision-making and classification problems are shifted to a
wireless edge server or a BS, the computational burden can be
significantly reduced at the user devices, i.e., VR headsets and
EEG headsets, thus enabling lightweight design and feasible
antenna deployment. However, it is very challenging to address
not only the resource allocation problem but also the brain
signals classification problem. To this end, we propose a novel
hybrid learning algorithm that leverages the advantages of
deep reinforcement learning to optimize the resources of the
system and properly predict the brain signals of the users with
high accuracy.
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Fig. 1: An illustration of our system model. K users equipped
with integrated VR-BCI headsets are experiencing VR applications
transmitted by the BS via downlink channels. At the same time,
the BS collects BCI signals from the users via uplink channels for
creating digital avatars to enhance user QoE.

II. SYSTEM MODEL

Our proposed system model is illustrated in Fig. 1. The
system consists of (i) a Base Station (BS) and (ii) K users
equipped with integrated VR-BCI headsets, e.g., Galea [7].
Each integrated VR-BCI headset can extract BCI signals from
J channels (i.e., corresponding to J electrodes of the headset)
from the user and provide VR services for the user at the same
time. The operations of the system are as follows.

A. System Operation

At time step t, user k sends BCI signals ek(t) to the BS. The
BCI signals ek(t) ∈ RJ×W can be represented by a J ×W
vector where J is the number of BCI channels and W is the
number of BCI signals collected during the sampling interval
in time step t. At the end of the time step t, the BS can collect
a set of BCI signals, i.e.,

e(t) = {e1(t), e2(t), . . . , eK(t)} ∈ RK×J×W . (1)

At the same time, the BS pre-processes VR content for users.
The pre-processing process can be 360-degree video viewport
rendering [10] or changing video resolution [11] that can
enhance the user Quality-of-Experience (QoE). For example,
VR sickness1 or user fatigue can be detected from BCI signals
as shown in [12]. The BS monitors the total computing load
(i.e., CPU), denoted by un(t) ∈ (0, 1), of the n-th core that is
available at the BS at time step t. The information about total
computing load, denoted by u(t) ∈ RN , is defined by:

u(t) = {u1(t), u2(t), . . . , uN (t)}, (2)

where N is the number of CPUs of the BS. The BS then
analyses the current state of the system and calculates the

1VR sickness is a common issue in VR applications in which the user’s
brain receives conflicting signals about self-movement between the physical
and virtual worlds.

optimal policy, i.e., computing resource allocation for VR pre-
processing and radio/power resource allocation for the uplink
channels in the next time step t+ 1.

To evaluate the performance of the proposed framework, we
propose a QoE metric that is a combination of (i) the round-
trip VR delay at the user and (ii) the accuracy of classifying
the BCI signals at the BS. The round-trip VR delay is the
latency between the time the user requests VR content from
the BS and the time the user gets the requested VR content
displayed in his/her headset. The accuracy of analyzing BCI
signals is obtained from a predictor at the BS that can predict
the actions of the users. We choose our metrics based on their
ability to reduce VR sickness and fatigue for the users. Studies
in [5], [10], [12] support this approach. Additionally, we focus
on BCI signal classification because predicting user actions
can help create intelligent avatars that behave like humans
in Metaverse scenarios. This could include imagined speech
communication [4], adaptive VR environment rendering [3],
and detecting anomalous states and error-related behaviors
[13]. To formulate our QoE metric, we construct a round-trip
VR delay and BCI predictor as follows.

B. Round-trip VR Delay

The round-trip VR delay consists of (i) processing latency
at the BS, (ii) downlink transmission latency, and (iii) uplink
transmission latency. Since most of the computation is shifted
to the BS, we assume that the latency at the user headsets is
negligible. Accordingly, the round-trip VR delay of user k at
time step t is calculated by:

Dk(t) = dk(t) +
lDk

rDk (t)
+

lUk
rUk (t)

, (3)

where dk(t) is the processing latency, e.g., pre-rendering the
VR content, at the BS, lDk and lUk are the length of data packets
to be transmitted over the downlink and uplink, respectively.
rDk (t) and rUk (t) are the downlink and uplink data rates
between the user k and the BS, respectively. The processing
delay of the BS depends on the process running at the BS and
the CPU capacity of the BS. In our setting, we consider that
the BS can support a VR streaming service. At time step t,
the BS measures its current available CPU state un(t) ∈ u(t).
Let τk(t) ∈ (0, 1) denote the portion of un(t) that is used for
pre-processing VR content for user k. Once un(t) and τk(t)
are obtained, the VR pre-processing delay for user k at the
BS can be calculated by:

dk(t) =
1

τk(t)un(t)υ
, (4)

where υ (Hz) is the CPU capacity, i.e., the total number of
computing cycles, of the BS. The uplink data rate for user k
is defined as follows:

rUk (t) =
∑

m∈M
BUρk,m(t) log2

(
1 +

pk(t)hk(t)

Im +BUN0

)
, (5)

where M is the set of radio resource blocks, pk(t) is the
transmit power of the user k, and hk is the time-varying
channel between the BS and user k. ρk,m(t) ∈ {0, 1} is the
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Fig. 2: An example of EEG signals recorded from two subjects
(participants) in dataset [8] responding to the same experimental
condition. The instructions to subjects are placed at the time 0
(marked by the vertical dashed line).

resource block allocation variable. ρk,m(t) = 1 if the resource
block m is allocated to user k. Otherwise ρk,m(t) = 0. Im
is the interference caused by other users in external services
that are using resource block m. BU is the bandwidth of each
resource block. N0 is the noise power spectral efficiency.

When multiple users transmit BCI signals to the BS via
uplink channels at the same time, the interference between
the transmit signals can cause construction errors at the BS
due to the noisy channel. In our work, we consider the packet
error rate when transmitting BCI signals of user k as [14]:

ϵk(t) =
∑

m∈M
ρk,mϵk,m, (6)

where ϵk,m = 1 − exp
(
− zσ2

U

pkhk(t)

)
is the packet error rate

over resource block m with z being a waterfall threshold [14].
Given the packet errors, the received BCI signals at the BS
can contain noise, e.g., Gaussian, or distortion. From hereafter,
we denote the noisy BCI signals received at the BS as ê(t) to
differentiate from the raw BCI signals as defined in (1).

For the downlink channel, the downlink data rate achieved
by the BS is calculated by:

rDk (t) = BD log2

(
1 +

PBhk(t)

ID +BDN0

)
, (7)

where PB is the transmit power of the BS, ID an BD are
interference and downlink bandwidth, respectively. Unlike the
uplink transmission, the broadcast downlink transmission can
significantly reduce packet errors. Therefore, we assume that
the packet error rate in the downlink transmission is negligible
compared with the uplink.

C. BCI Predictor

We consider a BCI predictor at the BS, denoted by ϕ, to be a
binary indicator (0 or 1) if the predicted output, e.g., predicted
hands/feet movement, matches the given labels, denoted by
l(t). In particular, ϕ (ê(t), l(t)) = 1 if the prediction is correct.
Otherwise ϕ (ê(t), l(t)) = 0. The goal of the BS is to minimize
the loss of false detections for the predictor ϕ given the
collected BCI signals. Formally, we define the loss of the
predictor ϕ by a cross-entropy loss as follows [17]:

Lϕ

(
ê(t), l(t)

)
= −

C∑
c=1

ϕ
(
ê(t), l(t)

)
log(ϱc), (8)

where C is the number of possible actions and ϱc is the
predicted probability of actions c, e.g., moving hands/feet. In
our work, EEG signals are used as BCI signals. However,
the extension beyond EEG, e.g., electrocardiogram (ECG)
or electromyogram (EMG), is straightforward. In Fig. 2, we
illustrate the EEG signals from two different subjects in dataset
[8] responding to the same instruction in the experiment,
i.e., imagining moving their hands. The goal of the BCI
predictor is to accurately predict the action of the user given
a fragment of continuous BCI signals as shown in Fig. 2. Our
considered setting is even more challenging than conventional
BCI settings because our BCI signals contain distortion caused
by the noisy wireless environment and the number of resource
blocks allocated by the BS. In the following, we design a QoE
model to capture the impacts of the noisy BCI signals on the
system performance.

D. QoE Model and Problem Formulation

We consider the QoE of user k, denoted by Qk, as a
combination of (i) round-trip VR delay and (ii) the prediction
accuracy for the actions. Therefore, we define Qk as follows:

Qk(ρ,p, τ , ϕ) =
1

T

T∑
t=1

(
η1φ

(
Dk(t), Dmax

)
+

η2ϕ
(
ê(t), l(t)

))
, (9)

where η1 and η2 are the positive weight factors; and T is the
time horizon. φ(·) is also a binary indicator which is defined
as follows:

φ
(
Dk(t), Dmax

)
=

{
1 if Dk(t) ≤ Dmax,
0 otherwise,

(10)

where Dmax is the maximum allowed round-trip VR delay for
user k. The definition of QoE above reflects the importance of
the VR delay and the prediction accuracy of the BCI predictor.
The relative importance between the two factors depends on
the weighting factors η1 and η2. For example, in the systems
that require highly accurate BCI predictions such as imagined
speech communication [4], the value of η2 can be increased.

In this paper, we consider the optimization problem that
maximizes the average QoE of users, given the following
constraints: (i) power at the BS and user headsets, (ii) wire-
less channels, and (iii) computational capability of the BS.
Formally, our optimization problem is defined as follows:

max
ρ,p,τ ,ϕ

1

K

∑
k∈K

Qk(ρ,p, τ , ϕ), (11a)

s.t.
∑
k∈K

ρk,m(t) = 1, ρk,m(t) ≥ 0, (11b)

0 ≤ pk(t) ≤ Pmax, (11c)∑
k∈K

τk(t) ≤ 1, τk ≥ 0, (11d)

ϕ
(
ê(t), l(t)

)
∈ {0, 1}, (11e)

where Pmax is the maximum transmission power of the in-
tegrated VR-BCI headsets. ρ = {ρk,m(t);∀k ∈ K,∀m ∈ M}



is the resource block allocation vector, τ = {τk(t);∀k ∈
K} is the computing resource allocation vector, and p =
{pk(t);∀k ∈ K} is the power allocation vector. In our opti-
mization problem, (11b) are the constraints for radio resource
block allocation, (11c) is the constraint for the transmit power,
(11d) are the constraints for the computing resource allocation
at the BS, and (11e) is the BCI predictor constraint. Note that
the maximization of Qk in (11) results in reducing the round-
trip VR delay Dk(t) and reducing the BCI prediction loss
Lϕ. Our considered problem involves not only a classification
problem, i.e., prediction on BCI signals in (8), but also a
decision-making problem, i.e., resource allocation problem in
(4) and (5). Therefore, current approaches in BCI classification
settings in [4], and [10] can not be directly applied. In the next
section, we propose a novel hybrid learning algorithm to tackle
this problem.

III. PROPOSED HYBRID LEARNING ALGORITHM

We propose a Hybrid learner which is illustrated in Fig. 3.
Our Hybrid learner consists of three deep neural networks
that are (i) an actor network, (ii) a critic network, and (iii) a
convolutional network. The inputs for training the deep neural
networks are empirical data from the BCI signals, the wireless
channel state, and the computing load of the BS. The output
of the proposed algorithm is the policy to jointly allocate
power for the users’ headsets, allocate radio resources for the
uplink channels, and predict the actions of the users based
on the BCI signals. Let θ, Θ, and φ denote the parameters,
i.e., weights and biases, of the actor network, critic network,
and convolutional network, respectively. Our proposed training
process for the Hybrid learner is illustrated in Algorithm 1.

The parameters for deep neural networks are first initialized
randomly (line 1 in Algorithm 1). At each training iteration
i, the Hybrid learner first collects a set of trajectories Di in
(14) by running current policy Ω(θi,Θi,φi) for O time steps.
The trajectories Di contain three main parts that are (i) the
observation from the environment, (ii) the action taken of the
BS based on the observation from the environment, and (iii)
QoE feedback from K users (line 3). The observation from
the environment is a tuple of three states that are channel state
h, computing load of the BS u, and BCI signals from users ê.
The action of the BS is a tuple of four parts that are the radio
resource block allocation vector ρ, the power allocation vector
p, the computing resource allocation vector τ , and the output
of the BCI predictor ϕ. Based on the collected trajectories, the
objective functions for updating the deep neural networks are
calculated as follows. The advantage estimator Âi is defined
in (15) [16] where λ is the actor-critic tradeoff parameter and
δo is the temporal-difference error which is defined by:

δo =
1

K

∑
k∈K

Qk,o + γV (ho+1,uo+1, êo+1)− V (ho,uo, êo),

(12)
where γ ∈ (0, 1) is the discount factor and V (·) is the
value function of the given observation, i.e., the output of
the critic network. Once the advantage estimator is obtained,
the decision-making objective can be calculated by J(Âi) as
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Fig. 3: Training process for the proposed Hybrid learner.

defined in (16). In the calculation of J(Âi), we adopt a policy-
clipping technique from [16]. In particular, the policy clipping
function g(ε, Âi) is:

g(ε, Âi) =

{
(1 + ε)Âi, if Âi ≥ 0,

(1− ε)Âi, if Âi < 0.
(13)

Algorithm 1: Hybrid Learning Algorithm
1 Input: Initialize θ0, Θ0 and φ0 at random.
2 for i = 0, 1, 2, . . . do
3 Collect a set of trajectories Di:

Di =
{(

ho,uo, êo
)
,
(
ρo,po, τ o, ϕo

)
,(

Q1,o, Q2,o, . . . , QK,o

)}∣∣∣O
o=1

. (14)

4 Compute advantage estimator function Âi over Di:

Âi =

O∑
o=1

(γλ)oδo. (15)

5 Calculate the decision-making objective:

J(Âi) = min
( Ω(θi,Θi,φi)

Ω(θi−1,Θi−1,φi−1)
Âi, g(ε, Âi)

)
.

(16)
6 Calculate Lϕ(ê, l;φ) as defined in (8).
7 Update the actor network as follows:

θi+1 = θi + αa∇J(Âi). (17)
8 Update the critic network as follows:

Θi+1 = Θi − αc∇Lc(Θ). (18)
9 Update the convolutional network as follows:

φi+1 = φi − αn∇Lϕ(ê, l;φ). (19)
10 end

With the policy clipping function, the gradient step update
is expected not to exceed certain thresholds so that the training
is more stable. Next, the classification loss Lϕ(ê, l;φ) is
calculated based on (8) with convolutional network (line 6).
The deep neural networks’ parameters are finally updated
as follows. The actor network’s parameters are updated in
(17) (line 7) where αc is the learning step size of the actor
network and ∇ is the gradient of the function which can be
calculated with stochastic gradient decent/ascent algorithms.
In our paper, we use Adam as the optimizer for all the
deep neural networks. The critic network’s parameters are



updated in (18) (line 8) where αc is the learning step size
and Lc is the critic loss which is defined by: Lc(Θ) =(
V (ho,uo, êo)− 1

K

∑
k∈K Qk,o

)2

. Finally, the convolutional
network’s parameters are updated in (19) (line 9) where αn is
the learning step size.

IV. PERFORMANCE EVALUATION

A. Data Processing

We conduct various simulation scenarios to show the effi-
ciency of our proposed approach. In particular, for the BCI
classification problem, we use a public dataset from [8]. The
dataset contains the experiment results of 109 subjects. Each
subject is instructed to do an action per experimental run.
The actions are opening/closing eyes, fists, and feet. On each
experimental run, the EEG signals are obtained through 64
EEG channels with the BCI2000 system [9]. The sampling rate
is 160 Hz. In our setting, we consider four different actions,
i.e., C = 4, that are open eyes, close eyes, open fist, and
moving feet. In the default setting, we consider BCI signals
from three subjects as illustrated in Fig. 2. After processing,
the BCI signals of each subject have 255,680 data samples. We
split the data samples into training and testing datasets with
the ratio 80:20. We then use each EEG channel as feature input
for the convolutional network of the Hybrid learner. Thus, we
have 64 input features and 4 class labels to train with the
Hybrid learner.

For the decision-making problem, i.e., radio and comput-
ing resource allocation, we conduct real-time experiments to
measure the processing latency at the BS as follows. We take
panoramic videos from an online source to generate 360-
degree views that can be displayed at the user headsets. For
this, we use the Vue-VR software [15] to pre-render the VR
content from the given panoramic videos. We then measure
the CPU usage of the local server when running the Vue-
VR application. The measured CPU information is used to
construct the vector u(t) in (2). Our local server is a MacBook
Air 2020 with 8GB memory and a 2.3 GHz 8-core CPU. For
the uplink and downlink latency, we use the Rayleigh fading
to simulate the dynamics of the time-varying wireless channel.
The number of radio resource blocks is set to M = 6. The
number of users is K = 3. The power of the BS and the user
headset are PB = 1 W and Pmax = 0.01 W. The uplink and
downlink bandwidth are BU = 1 MHz and BD = 20 MHz
[14]. The interference values are Im = ID = −207 dBm and
N0 = −174 dBm.

In comparison with our proposed algorithm, we introduce
the following baselines. (i) Proximal Policy Optimization
(PPO) [16]: PPO is a state-of-the-art reinforcement learning
algorithm for decision-making problems. Our Hybrid learner
also adopts the actor-critic architecture and policy clipping
techniques from PPO to achieve robust performance. We
directly use this architecture to learn the QoE defined in
(9). By maximizing the average QoE, the PPO baseline is
expected to reduce the loss Lϕ and the round-trip VR delay
Dk. (ii) Vanilla Policy Gradient (VPG) [17]: VPG is a classic

policy gradient algorithm for decision-making problems with
continuous action values. The VPG baseline also uses the
actor-critic architecture. However, the VPG algorithm does
not have the embedded advantage estimator function Â and
the policy clipping technique. (iii) Support-Vector Machine
(SVM) [18]: SVM is a classic supervised learning algorithm
and is a robust benchmark for classification problems. For
a fair comparison, we consider the following setting to give
SVM certain advantages compared with our proposed algo-
rithm. We train the SVM with training data that are collectively
fed into the input of the SVM. In other words, all the training
data is stored and reused at the BS. We observe that this
training method can significantly boost the performance of the
SVM. Otherwise, when we apply the same training method as
our proposed algorithm, i.e., the training data is removed after
feeding into the deep neural networks, the performance of the
SVM is significantly decreased.

B. Simulation Results

We first illustrate the training performance of the proposed
algorithm and the baselines in Fig. 4. In Fig. 4, we can
observe the increase in QoE values of all the algorithms
during 2,000 training episodes. These results imply that all
algorithms can learn a good policy given the dynamics of the
environment. Note that we consider 2,000 training episodes
and terminate the training after 2,000 training episodes to
prevent over-fitting. After training, the trained models will be
used to evaluate the performance of the learning approaches.
In Fig. 4(b), we can observe that the proposed Hybrid learner
can obtain highly accurate predictions on BCI signals. The
SVM baseline also achieves similar performance with the
Hybrid learner. Specifically, the SVM baseline learning speed
is higher than that of the Hybrid learner because the training
data is stored and reused at the BS when we train the SVM
baseline. However, the SVM baseline with higher demand for
the amount of input data can only converge to the accuracy
that is similar to the Hybrid learner. Unlike the Hybrid learner
and SVM, the performance of the PPO and VPG baselines
shows that they are not effective to deal with the classification
problem with only reinforcement learning design. With the
number of class labels being C = 4, the prediction accuracy
of the PPO and VPG baselines are just approximate the chance
level, i.e., 25%. In Fig. 4(c), we can observe that all algorithms
can reduce the round-trip VR delay. Thanks to reinforcement
learning techniques, all algorithms can learn the dynamics
of radio and computing resources of the system. We can
observe that our proposed algorithm achieves lower round-
trip VR delay because of two main reasons. First, they utilize
actor-critic architecture and policy clipping techniques of PPO.
Second, our new design in forwarding the losses through the
actor-critic networks and convolutional network enables the
better realization of the Hybrid learner. As a result, the Hybrid
learner can distinguish between two distinct learning goals
which are BCI classification and radio/computing resource
allocation, and thus facilitating the training process.
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Fig. 4: (a) Normalized QoE, (b) classification accuracy, and (c) average round-trip VR delay values with (η1, η2) = (1, 1).

-120 -90 -60 -30 0
Pmax (dBm)

0.3

0.4

0.5

0.6

0.7

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

Hybrid
PPO
VPG
SVM
Chance level

-120 -90 -60 -30 0
Pmax (dBm)

10 2

10 1

100

101

102
Av

er
ag

e 
De

la
y 

(s
ec

on
d) Hybrid

PPO
VPG
SVM

Fig. 5: (a) BCI classification accuracy and (b) round-trip VR delay
of the algorithms with testing data when the power capacity varies.

2.3 2.3 × 10 1 2.3 × 10 2 2.3 × 10 3 2.3 × 10 4

CPU ( ) (GHz)

0.3

0.4

0.5

0.6

0.7

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

Hybrid
PPO
VPG
SVM
Chance level

2.3 2.3 × 10 1 2.3 × 10 2 2.3 × 10 3 2.3 × 10 4

CPU ( ) (GHz)

3 × 10 3

4 × 10 3

6 × 10 3

Av
er

ag
e 

De
la

y 
(s

ec
on

d) Hybrid
PPO
VPG
SVM

Fig. 6: (a) Classification accuracy and (b) round-trip VR delay of the
algorithms with testing data when the CPU capacity of the BS varies.

Next, we vary the maximum power value at the headsets
of users, i.e., Pmax, to evaluate the impacts of the power
allocation on the system performance. In Fig. 5(a), we can
observe that when the maximum power of the headsets is close
to the noise level, the accuracy of the prediction decreases.
The reason is that with the low level of power allocated to
the radio resource blocks, the signal-to-interference plus noise
ratio (SINR) at the BS may significantly decrease, resulting in
the high packet error rate ϵk in (6). Our proposed algorithm
shows good performance under all the considered scenarios.
Similar to the results from Fig. 4(b), the classification accuracy
obtained by the SVM baseline is almost similar to that of the
Hybrid learner and is much higher than those of the PPO and
VPG baselines. In Fig. 5(b), we can observe that the increase
of power results in the decrease of the round-trip VR delay.
The latency obtained by our proposed algorithm is lower than
those of the baseline algorithms in most of the scenarios.

Finally, we evaluate the impacts of the computing capacity
of the BS on the system performance. In Fig. 6(a), it can
be observed that the decrease in the CPU capacity of the
BS does not have an impact on the classification accuracy.
These results imply that with the limited CPU capacity, our
proposed algorithm with deep neural networks can achieve

good predictions on the BCI signals. Unlike our proposed
algorithm with advanced architecture designs, the PPO and
VPG baselines only obtain the classification accuracy values
at the chance level, i.e., 25%. In Fig. 6(b), we can observe
that the decrease in CPU capacity results in the increase of
the round-trip VR delay. The reason is that with lower CPU
capacity, the BS takes a longer time to pre-precess VR content
for the users.

V. CONCLUSION

In this paper, we have proposed a novel framework to facil-
itate the creation of intelligent digital avatars for Metaverse
users. Specifically, our proposed hybrid training algorithm
can accurately predict user behaviors by analyzing their brain
signals. Furthermore, our proposed algorithm can optimally
allocate radio and computing resources to the users so that the
end-to-end latency of the system can be minimized. Simulation
results have shown that our proposed framework with a hybrid
learning algorithm outperforms the current state-of-the-art
deep reinforcement learning algorithm.
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