Ordinal random fields for recommender systems

Publication Type:
Conference Proceeding
Journal of Machine Learning Research, 2014, 39 (2014), pp. 283 - 298
Issue Date:
Full metadata record
Files in This Item:
Filename Description Size
liu2014ordinal_paper.pdfPublished version438.27 kB
Adobe PDF
© 2014 S. Liu, T. Tran, G. Li & Y. Jiang. Recommender Systems heavily rely on numerical preferences, whereas the importance of ordinal preferences has only been recognised in recent works of Ordinal Matrix Factorisation (OMF). Although the OMF can effectively exploit ordinal properties, it captures only the higher-order interactions among users and items, without considering the localised interactions properly. This paper employs Markov Random Fields (MRF) to investigate the localised interactions, and proposes a unified model called Ordinal Random Fields (ORF) to take advantages of both the representational power of the MRF and the ease of modelling ordinal preferences by the OMF. Experimental result on public datasets demonstrates that the proposed ORF model can capture both types of interactions, resulting in improved recommendation accuracy.
Please use this identifier to cite or link to this item: