Minimax Quantum Tomography: Estimators and Relative Entropy Bounds

Publication Type:
Journal Article
Citation:
Physical Review Letters, 2016, 116 (9)
Issue Date:
2016-03-04
Full metadata record
Files in This Item:
Filename Description Size
PhysRevLett.116.090407.pdfPublished Version482.62 kB
Adobe PDF
© 2016 American Physical Society. A minimax estimator has the minimum possible error ("risk") in the worst case. We construct the first minimax estimators for quantum state tomography with relative entropy risk. The minimax risk of nonadaptive tomography scales as O(1/N) - in contrast to that of classical probability estimation, which is O(1/N) - where N is the number of copies of the quantum state used. We trace this deficiency to sampling mismatch: future observations that determine risk may come from a different sample space than the past data that determine the estimate. This makes minimax estimators very biased, and we propose a computationally tractable alternative with similar behavior in the worst case, but superior accuracy on most states.
Please use this identifier to cite or link to this item: