A SVM-based classification approach for early warning systems

Publication Type:
Conference Proceeding
World Scientific Proceedings Series on Computer Engineering and Information Science 1; Computational Intelligence in Decision and Control - Proceedings of the 8th International FLINS Conference, 2008, pp. 549 - 554
Issue Date:
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2008001103OK.pdf234.66 kB
Adobe PDF
An early warning system (EWS) is a timely surveillance tool to identifies potential crises and generate warning signals at a relatively early stage. This study aims to improve the learning functions of an EWS through training it using support vector machine (SVM) techniques. An adaptive pruning algorithm of SVM classification is developed which can improve prediction ability of EWS. This algorithm also can handle multi-data sources, multi-sensitive values, multi-indicators, and multi-crises issues in EWSs.
Please use this identifier to cite or link to this item: