Swarm Intelligence In Myoelectric Control: Particle Swarm Based Dimensionality Reduction

Publisher:
IASTED
Publication Type:
Conference Proceeding
Citation:
6th IASTED International Conference on Biomedical Engineering (BioMED 2008), 2008, pp. 601 - 694
Issue Date:
2008-01
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2008003255.pdf108.39 kB
Adobe PDF
The myoelectric signals (MES) from human muscles have been utilized in many applications such as prosthesis control. The identification of various MES temporal structures is used to control the movement of prosthetic devices by utilizing a pattern recognition approach. Recent advances in this field have shown that there are a number of factors limiting the clinical availability of such systems. Several control strategies have been proposed but deficiencies still exist with most of those strategies especially with the Dimensionality Reduction (DR) part. This paper proposes using Particle Swarm Optimization (PSO) algorithm with the concept of Mutual Information (MI) to produce a novel hybrid feature selection algorithm. The new algorithm, called PSOMIFS, is utilized as a DR tool in myoelectric control problems. The PSOMIFS will be compared with other techniques to prove the effectiveness of the proposed method. Accurate results are acquired using only a small subset of the original feature set producing a classification accuracy of 99% across a problem of ten classes based on tests done on six subjects MES datasets.
Please use this identifier to cite or link to this item: