Machine learning techniques and use of event information for stock market prediction: A survey and evaluation

Publication Type:
Conference Proceeding
Citation:
Proceedings - International Conference on Computational Intelligence for Modelling, Control and Automation, CIMCA 2005 and International Conference on Intelligent Agents, Web Technologies and Internet, 2005, 2 pp. 835 - 841
Issue Date:
2005-12-01
Metrics:
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2006004231OK.pdf197.11 kB
Adobe PDF
This paper surveys machine learning techniques for stock market prediction. The prediction of stock markets is regarded as a challenging task of financial time series prediction. In this paper, we present recent developments in stock market prediction models, and discuss their advantages and disadvantages. In addition, we investigate various global events and their issues on predicting stock markets. From this survey, we found that incorporating event information with prediction model plays very important roles for more accurate prediction. Hence, an accurate event weighting method and a stable automated event extraction system are required to provide better performance in financial time series prediction. © 2005 IEEE.
Please use this identifier to cite or link to this item: