Removal of antibiotics (sulfamethazine, tetracycline and chloramphenicol) from aqueous solution by raw and nitrogen plasma modified steel shavings.

Publisher:
Elsevier
Publication Type:
Journal Article
Citation:
Science of the Total Environment, 2017, 601-602 pp. 845 - 856
Issue Date:
2017-06-01
Full metadata record
Files in This Item:
The removal of sulfamethazine (SMT), tetracycline (TC) and chloramphenicol (CP) from synthetic wastewater by raw (M3) and nitrogen plasma modified steel shavings (M3-plN2) was investigated using batch experiments. The adsorption kinetics could be expressed by both pseudo-first-order kinetic (PFO) and pseudo-second-order kinetic (PSO) models, where correlation coefficient r(2) values were high. The values of PFO rate constant k1p and PSO rate constant k2p decreased as SMT-M3>SMT-M3-plN2>TC-M3-plN2>TC-M3>CP-M3>CP-M3-plN2 and SMT-M3>SMT-M3-plN2>TC-M3>TC-M3-plN2>CP-M3>CP-M3-plN2, respectively. Solution pH, adsorbent dose and temperature exerted great influences on the adsorption process. The plasma modification with nitrogen gas cleaned and enhanced 1.7-fold the surface area and 1.4-fold the pore volume of steel shavings. Consequently, the removal capacity of SMT, TC, CP on the adsorbent rose from 2519.98 to 2702.55, 1720.20 to 2158.36, and 2772.81 to 2920.11μg/g, respectively. Typical chemical states of iron (XPS in Fe2p3 region) in the adsorbents which are mainly responsible for removing antibiotics through hydrogen bonding, electrostatic and non- electrostatic interactions and redox reaction were as follows: Fe3O4/Fe(2+), Fe3O4/Fe(3+), FeO/Fe(2+) and Fe2O3/Fe(3+).
Please use this identifier to cite or link to this item: