Validated ground penetrating radar simulation model for estimating rebar location in infrastructure monitoring

Publication Type:
Conference Proceeding
Proceedings of the 2017 12th IEEE Conference on Industrial Electronics and Applications, ICIEA 2017, 2018, 2018-February pp. 1460 - 1465
Issue Date:
Full metadata record
© 2017 IEEE. Biogenic sulphide corrosion of reinforced concrete sewer pipes is an ongoing problem for wastewater governing bodies. Ensuring Workplace Health and Safety (WHS) is also an issue due to the harsh nature of sewer environments. As such, research into technologies that allow for automatic unmanned site assessments are of major priority to wastewater managing utilities. The use of Ground Penetrating Radar (GPR) is currently being investigated for it's ability to provide subsurface images. However, the GPR technology has not been tested and validated in harsh sewer environments. It is anticipated that the GPR interpretation can be hindered by low signal to noise ratio. As data driven machine learning techniques have proven to work in higly challenging data, our intenetion is to apply such techniques in GPR data processing. However, this is hindered by the lack of large amount of training data as it is prohibitively hard to collect such real experimental testing data. Thus, the aim of this study is to validate a ground penetrating radar simulation software, gprMax, and test it for suitability in generating realistic, big data sets with which to train the aforementioned data driven machine learning models supplemented with actual sewer crown data. The results of the study is the validation of the GPR simulator, tuned and able to generate reasonably realistic data. A novel concrete analog was also developed to allow for ease of testing of various parameters such as rebar cover depths and rebar spacing.
Please use this identifier to cite or link to this item: