A Convex Formulation for Spectral Shrunk Clustering

Publisher:
AAAI
Publication Type:
Conference Proceeding
Citation:
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015, pp. 2532 - 2538
Issue Date:
2015-06-01
Full metadata record
Files in This Item:
Filename Description Size
1411.6308v1.pdfPublished version221.94 kB
Adobe PDF
Spectral clustering is a fundamental technique in the field of data mining and information processing. Most existing spectral clustering algorithms integrate dimensionality reduction into the clustering process assisted by manifold learning in the original space. However, the manifold in reduced-dimensional subspace is likely to exhibit altered properties in contrast with the original space. Thus, applying manifold information obtained from the original space to the clustering process in a low-dimensional subspace is prone to inferior performance. Aiming to address this issue, we propose a novel convex algorithm that mines the manifold structure in the low-dimensional subspace. In addition, our unified learning process makes the manifold learning particularly tailored for the clustering. Compared with other related methods, the proposed algorithm results in more structured clustering result. To validate the efficacy of the proposed algorithm, we perform extensive experiments on several benchmark datasets in comparison with some state-of-the-art clustering approaches. The experimental results demonstrate that the proposed algorithm has quite promising clustering performance
Please use this identifier to cite or link to this item: