The reinforcement contribution to the cyclic behaviour of reinforced concrete beam hinges

Publication Type:
Journal Article
Citation:
Earthquake Engineering and Structural Dynamics, 2012, 41 (12), pp. 1591 - 1608
Issue Date:
2012-10-10
Full metadata record
Files in This Item:
Filename Description Size
Visintin_et_al-2012-Earthquake_Engineering_&_Structural_Dynamics.pdfPublished Version767.21 kB
Adobe PDF
The cyclic behaviour of plastic hinges is an essential component in tracking the behaviour of RC frames to failure, not only for monotonically increasing force/pressure loads such as under extreme wind loads but also for dynamic displacement-driven loads such as under earthquake ground motions. To describe member deformations at ultimate loading, traditional moment-curvature techniques have required the use of an empirical hinge length to predict rotations, and despite much research a definitive generic expression for this empirical hinge length is yet to be defined. To overcome this problem, a discrete rotation approach, which directly quantifies the rotation between crack faces using mechanics, has been developed for beams and been shown to be accurate under monotonic loading. In this paper, the discrete rotation approach for monotonic loads is extended to cope with cyclic loads for dynamic analyses, and this has led to the development of a new partial interaction numerical simulation capable of allowing for reversals of slip of the reinforcing bars. This numerical tool should be very useful for the nonlinear analysis of reinforced concrete beams and reinforced concrete columns with small axial loads under severe dynamic loads. © 2011 John Wiley & Sons, Ltd..
Please use this identifier to cite or link to this item: