Low latency IP mobility management: Protocol and analysis

Publication Type:
Journal Article
Eurasip Journal on Wireless Communications and Networking, 2011, 2011
Issue Date:
Full metadata record
Mobile IP is one of the dominating protocols that enable a mobile node to remain reachable while moving around in the Internet. However, it suffers from long handoff latency and route inefficiency. In this article, we present a novel distributed mobility management architecture, ADA (Asymmetric Double-Agents), which introduces double mobility agents to serve one end-to-end communication. One mobility agent is located close to the MN and the other close to the CN. ADA can achieve both low handoff latency and low transmission latency, which is crucial for improvement of user perceived QoS. It also provides an easy-to-use mechanism for MNs to manage and control each traffic session with a different policy and provide specific QoS support. We apply ADA to MIPv6 communications and present a detailed protocol design. Subsequently, we propose an analytical framework for systematic and thorough performance evaluation of mobile IP-based mobility management protocols. Equipped with this model, we analyze the handoff latency, single interaction delay and total time cost under the bidirectional tunneling mode and the route optimization mode for MIPv6, HMIPv6, CNLP, and ADA. Through both quantitative analysis and NS2-based simulations, we show that ADA significantly outperforms the existing mobility management protocols. © 2011 Liu et al; licensee Springer.
Please use this identifier to cite or link to this item: