Applying an electric field in a built-in zero valent iron - Anaerobic reactor for enhancement of sludge granulation

Publication Type:
Journal Article
Water Research, 2011, 45 (3), pp. 1258 - 1266
Issue Date:
Filename Description Size
water.pdfPublished Version874.12 kB
Adobe PDF
Full metadata record
A zero valent iron (ZVI) bed with a pair of electrodes was installed in an upflow anaerobic sludge blanket (UASB) reactor to create an enhanced condition to increase the rate of anaerobic granulation. The effects of an electric field and ZVI on granulation were investigated in three UASB reactors operated in parallel: an electric field enhanced ZVI-UASB reactor (reactor R1), a ZVI-UASB reactor (reactor R2) and a common UASB reactor (reactor R3). When a voltage of 1.4 V was supplied to reactor R1, COD removal dramatically increased from 60.3% to 90.7% over the following four days, while the mean granule size rapidly grew from 151.4 μm to 695.1 μm over the following 38 days. Comparatively, COD removal was lower and the increase in granule size was slower in the other two reactors (in the order: R1 > R2 > R3). The electric field caused the ZVI to more effectively buffer acidity and maintain a relatively low oxidation-reduction potential in the reactor. In addition, the electric field resulted in a significant increase in ferrous ion leaching and extracellular polymeric substances (EPS) production. These changes benefited methanogenesis and granulation. Scanning electron microscopy (SEM) images showed that different microorganisms were dominant in the external and internal layers of the reactor R1 granules. Additionally, fluorescence in situ hybridization (FISH) analysis indicated that the relative abundance of methanogens in reactor R1 was significantly greater than in the other two reactors. Taken together, these results suggested that the use of ZVI combined with an electric field in an UASB reactor could effectively enhance the sludge granulation. © 2010.
Please use this identifier to cite or link to this item: