Influence of oxygenated organic aerosols (OOAs) on the oxidative potential of diesel and biodiesel particulate matter.

Publication Type:
Journal Article
Citation:
Environmental science & technology, 2013, 47 (14), pp. 7655 - 7662
Issue Date:
2013-07
Full metadata record
Files in This Item:
Filename Description Size
es4007433.pdfPublished Version359.14 kB
Adobe PDF
Generally, the magnitude of pollutant emissions from diesel engines running on biodiesel fuel is ultimately coupled to the structure of the fuel's constituent molecules. Previous studies demonstrated the relationship between the organic fraction of particulate matter (PM) and its oxidative potential. Herein, emissions from a diesel engine running on different biofuels were analyzed in more detail to explore the role that different organic fractions play in the measured oxidative potential. In this work, a more detailed chemical analysis of biofuel PM was undertaken using a compact time of flight aerosol mass spectrometer (c-ToF AMS). This enabled a better identification of the different organic fractions that contribute to the overall measured oxidative potentials. The concentration of reactive oxygen species (ROS) was measured using a profluorescent nitroxide molecular probe 9-(1,1,3,3-tetramethylisoindolin-2-yloxyl-5-ethynyl)-10-(phenylethynyl)anthracene (BPEAnit). Therefore, the oxidative potential of the PM, measured through the ROS content, although proportional to the total organic content in certain cases, shows a much higher correlation with the oxygenated organic fraction as measured by the c-ToF AMS. This highlights the importance of knowing the surface chemistry of particles for assessing their health impacts. It also sheds light onto new aspects of particulate emissions that should be taken into account when establishing relevant metrics for assessing health implications of replacing diesel with alternative fuels.
Please use this identifier to cite or link to this item: