The link between entropic uncertainty and nonlocality

Publication Type:
Journal Article
Citation:
Journal of Physics A: Mathematical and Theoretical, 2013, 46 (5)
Issue Date:
2013-02-08
Full metadata record
Files in This Item:
Filename Description Size
1108.5349v2.pdfSubmitted Version500.49 kB
Adobe PDF
Two of the most intriguing features of quantum physics are the uncertainty principle and the occurrence of nonlocal correlations. The uncertainty principle states that there exist pairs of incompatible measurements on quantum systems such that their outcomes cannot both be predicted. On the other hand, nonlocal correlations of measurement outcomes at different locations cannot be explained by classical physics, but appear in the presence of entanglement. Here, we show that these two fundamental quantum effects are quantitatively related. Namely, we provide an entropic uncertainty relation for the outcomes of two binary measurements, where the lower bound on the uncertainty is quantified in terms of the maximum Clauser-Horne-Shimony-Holt value that can be achieved with these measurements. We discuss applications of this uncertainty relation in quantum cryptography, in particular, to certify quantum sources using untrusted devices. © 2013 IOP Publishing Ltd.
Please use this identifier to cite or link to this item: