How to best sample a periodic probability distribution, or on the accuracy of Hamiltonian finding strategies

Publication Type:
Journal Article
Citation:
Quantum Information Processing, 2013, 12 (1), pp. 611 - 623
Issue Date:
2013-01-01
Full metadata record
Files in This Item:
Filename Description Size
ContentServer (7).pdfPublished Version242.94 kB
Adobe PDF
Projective measurements of a single two-level quantum mechanical system (a qubit) evolving under a time-independent Hamiltonian produce a probability distribution that is periodic in the evolution time. The period of this distribution is an important parameter in the Hamiltonian. Here, we explore how to design experiments so as to minimize error in the estimation of this parameter. While it has been shown that useful results may be obtained by minimizing the risk incurred by each experiment, such an approach is computationally intractable in general. Here, we motivate and derive heuristic strategies for experiment design that enjoy the same exponential scaling as fully optimized strategies. We then discuss generalizations to the case of finite relaxation times, T 2 < ∞. © 2012 Springer Science+Business Media, LLC.
Please use this identifier to cite or link to this item: