Biochemical and physiological responses of halophilic nanophytoplankton (Dunaliella salina) from exposure to xeno-estrogen 17α-ethinylestradiol

Publication Type:
Journal Article
Environmental Science and Pollution Research, 2017, 24 (8), pp. 7392 - 7402
Issue Date:
Full metadata record
© 2017, Springer-Verlag Berlin Heidelberg. The environmental impacts of various pollutants on the entire levels of organisms are under investigation. Among these pollutants, endocrine-disrupting compounds (EDCs) present a serious hazard, even though the environmental significance of these compounds remains basically unknown. To drop some light on this field, we assessed the effects of a 11-day exposure of 17α-ethinylestradiol (EE2) on the growth, metabolic content, antioxidant response, oxidative stress, and genetic damage of Dunaliella salina, isolated from Tunisian biotopes. The results showed that at 10 ng L−1, EE2 could stimulate the growth of D. salina and increase its cellular content of photosynthetic pigments and metabolites; however, it did not significantly increase the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) or the level of malondialdehyde (MDA) and hydrogen peroxide (H2O2). In contrast, exposure to high levels of EE2 concentrations significantly inhibited the growth of D. salina (P < 0.05), decreased the cellular content of photosynthetic pigments, increased the cellular content of all of the metabolites and the SOD activity, and inhibited CAT and GPx activities. Nevertheless, the balance between oxidant and antioxidant enzymes was disrupted because H2O2 content along with MDA content simultaneously increased. Contrary to expected results, DNA damage (strand breaks) decreased after the exposure of algae to EE2. The results of this study suggest that EE2 toxicity could result in environmental impacts with consequences on the whole aquatic community. [Figure not available: see fulltext.]
Please use this identifier to cite or link to this item: