Compact hyper-band printed slot antenna with stable radiation properties

Publisher:
Institute of Electrical and Electronics Engineers
Publication Type:
Journal Article
Citation:
IEEE Transactions on Antennas and Propagation, 2014, 62 (6), pp. 2962 - 2969
Issue Date:
2014-06
Full metadata record
Files in This Item:
A compact hyper-band ( > 10:1 impedance bandwidth) printed antenna design is investigated numerically and experimentally. It is based on an elliptical-slot antenna augmented with a parasitic oval patch and driven with a specially engineered microstrip-line-fed elliptical tuning fork element. The parasitic and driven elements are adjusted along with the elliptical slot to create additional resonance modes; adjust the coupling strengths among all of the design components; facilitate the overlap of adjacent resonance modes; and fine tune the input impedance. The total size of the final optimized antenna is only 30×40 mm 2 . It exhibits a -10-dB impedance bandwidth from 2.26 to 22.18 GHz. Desirable radiation performance characteristics, including relatively stable and omni-directional radiation patterns, are obtained over this range. A prototype was fabricated and tested. The experimental results confirm the predicted input impedance bandwidth and radiation characteristics. While the hyper-band performance could be used for high fidelity short pulse applications, the antenna could also be used for multi-band operations from 3.1-10.6 GHz since it covers that entire ultra-wideband (UWB) spectral range. © 1963-2012 IEEE.
Please use this identifier to cite or link to this item: