Protective effect of pioglitazone, a PPARγ agonist against acetaminophen-induced hepatotoxicity in rats

Publication Type:
Journal Article
Citation:
Molecular and Cellular Biochemistry, 2014, 393 (1-2), pp. 223 - 228
Issue Date:
2014-01-01
Filename Description Size
10.1007%2Fs11010-014-2064-9.pdfPublished Version514.75 kB
Adobe PDF
Full metadata record
Acetaminophen has a reasonable safety profile when consumed in therapeutic doses. However, it could induce hepatotoxicity and even acute liver failure when taken at an overdose. Pioglitazone, PPARγ ligand, is clinically tested and used in treatment of diabetes. PPARγ is a key nuclear hormone receptor of lipid metabolisms and regulates several gene transcriptions associated with differentiation, growth arrest, and apoptosis. The aim of our study was to evaluate the hepatoprotective activity of pioglitazone on acetaminophen-induced hepatotoxicity and to understand the relationship between the PPARγ and acetaminophen-induced hepato injury. For the experiment, Sprague-Dawley rats (160-180 g) were used and divided into four groups. Groups I and II were normal and experimental controls, respectively. Groups III and IV received the pioglitazone 20 mg/kg for 10 days. Hepatotoxicity was induced in Groups II and III on the eighth day with acetaminophen (i.p. 350 mg/kg body weight). The hepatoprotective effect was evaluated by performing an assay of the total protein, total bilirubin, alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, and α-fetoprotein as well as glutathione peroxidase, lipid peroxidation, catalase, superoxide dismutase, and glutathione transferase and liver histopathology. The assay results were presented as mean and standard error of mean for each group. The study group was compared with the control group by one-way ANOVA test. A p value of <0.05 was considered significant. Pioglitazone significantly reduced the elevated level of above serum marker enzymes and also inhibits the free radical formation by scavenging hydroxyl ions. It also restored the level of LPO and significantly elevated the levels of endogenous antioxidant enzymes in acetaminophen-challenged hepatotoxicity. Liver histopathological examination showed that pioglitazone administration antagonized acetaminophen -induced liver pathological damage. Various biochemical estimations of different hepatic markers and antioxidant enzymes and histopathological studies of liver tissues glimpse a support to its significant hepatoprotective activity on acetaminophen -induced hepatotoxicity. © 2014 Springer Science+Business Media.
Please use this identifier to cite or link to this item: