Sorptive removal of phenolic endocrine disruptors by functionalized biochar: competitive interaction mechanism, removal efficacy and application in wastewater

Publisher:
Elsevier
Publication Type:
Journal Article
Citation:
Chemical Engineering Journal, 2017
Issue Date:
2017-11-08
Full metadata record
Files in This Item:
Filename Description Size
624781.pdfAccepted Manuscript783.12 kB
Adobe PDF
Sorptive removal of six phenolic endocrine disrupting chemicals (EDCs) estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethynylestradiol (EE2), bisphenol A (BPA) and 4-tert-butylphenol (4tBP) by functionalized biochar (fBC) through competitive interactions was investigated. EDC sorption was pH dependent with the maximum sorption at pH 3.0-3.5 due to hydrogen bonds and π-π interactions as the principal sorptive mechanism. Sorption isotherm of the EDCs was fitted to the Langmuir model. Sorption capacities and distribution coefficient values followed the order E1 > E2 ≥ EE2 > BPA > 4tBP > E3. The findings suggested that EDC sorption occurred mainly through pseudo-second order and external mass transfer diffusion processes, by forming H-bonds along with π-π electron-donor-acceptor (EDA) interactions at different pH. The complete removal of ∼500 μg L-1 of each EDC from different water decreased in the order: deionised water > membrane bioreactor (MBR) sewage effluent > synthetic wastewater. The presence of sodium lauryl sulphonate and acacia gum in synthetic wastewater significantly suppressed sorption affinity of EDCs by 38-50%, hence requiring more fBC to maintain removal efficacy.
Please use this identifier to cite or link to this item: