Exploiting hierarchical activations of neural network for image retrieval

Publication Type:
Conference Proceeding
Citation:
MM 2016 - Proceedings of the 2016 ACM Multimedia Conference, 2016, pp. 132 - 136
Issue Date:
2016-10-01
Full metadata record
Files in This Item:
Filename Description Size
exploiting.pdfPublished version635.91 kB
Adobe PDF
© 2016 ACM. The Convolutional Neural Networks (CNNs) have achieved breakthroughs on several image retrieval benchmarks. Most previous works re-formulate CNNs as global feature extractors used for linear scan. This paper proposes a Multilayer Orderless Fusion (MOF) approach to integrate the activations of CNN in the Bag-of-Words (BoW) framework. Specifically, through only one forward pass in the network, we extract multi-layer CNN activations of local patches. Activations from each layer are aggregated in one BoW model, and several BoW models are combined with late fusion. Experimental results on two benchmark datasets demonstrate the effectiveness of the proposed method.
Please use this identifier to cite or link to this item: