A Novel Method for Smoothing Raw GPS Data with Low Cost and High Reliability

Publisher:
IEEE
Publication Type:
Conference Proceeding
Citation:
2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), 2016, pp. 1 - 5 (5)
Issue Date:
2016-01-01
Full metadata record
Files in This Item:
Filename Description Size
07880866.pdfPublished version495.75 kB
Adobe PDF
The precise spatio-temporal position data of vehicles is useful for most studies, such as wireless link lifetime and node degree in vehicular ad hoc networks. However, due to the system errors and random errors, the existing Global Positioning System (GPS) only provides the positional accuracy about 10m or even worse. In this paper, to address the issue of positional accuracy, a Clustering and Approximating (C-A) algorithm is proposed. We first divide each road into several small parts which are described by linear functions. Then a linear regression algorithm is utilized to approximate traces under system errors, which is reliable for reducing GPS errors. Particularly, when two roads are very close, GPS points may be mapped on adjacent roads. A clustering algorithm is taken to separate GPS points and their positions are revised by the iterative utilization of the linear regression algorithm. In the end, the method mentioned above smoothes raw GPS data of buses in Taiwan to make it available for further researches. Compared with existing methods, the method described in this paper characterized with low cost and high reliability in different situations. Besides, its simple model will make the process of revising data more convenient.
Please use this identifier to cite or link to this item: