One-sided device-independent QKD and position-based cryptography from monogamy games

Publication Type:
Conference Proceeding
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2013, 7881 LNCS pp. 609 - 625
Issue Date:
Filename Description Size
10.1007%2F978-3-642-38348-9_36.pdfPublished version342 kB
Adobe PDF
Full metadata record
A serious concern with quantum key distribution (QKD) schemes is that, when under attack, the quantum devices in a real-life implementation may behave differently than modeled in the security proof. This can lead to real-life attacks against provably secure QKD schemes. In this work, we show that the standard BB84 QKD scheme is one-sided device-independent. This means that security holds even if Bob's quantum device is arbitrarily malicious, as long as Alice's device behaves as it should. Thus, we can completely remove the trust into Bob's quantum device for free, without the need for changing the scheme, and without the need for hard-to-implement loophole-free violations of Bell inequality, as is required for fully (meaning two-sided) device-independent QKD. For our analysis, we introduce a new quantum game, called a monogamy-of-entanglement game, and we show a strong parallel repetition theorem for this game. This new notion is likely to be of independent interest and to find additional applications. Indeed, besides the application to QKD, we also show a direct application to position-based quantum cryptography: we give the first security proof for a one-round position-verification scheme that requires only single-qubit operations. © 2013 International Association for Cryptologic Research.
Please use this identifier to cite or link to this item: