Multitask spectral clustering by exploring intertask correlation

Publication Type:
Journal Article
Citation:
IEEE Transactions on Cybernetics, 2015, 45 (5), pp. 1069 - 1080
Issue Date:
2015-05-01
Metrics:
Full metadata record
Files in This Item:
Filename Description Size
06902787.pdfPublished Version1.6 MB
Adobe PDF
© 2014 IEEE. Clustering, as one of the most classical research problems in pattern recognition and data mining, has been widely explored and applied to various applications. Due to the rapid evolution of data on the Web, more emerging challenges have been posed on traditional clustering techniques: 1) correlations among related clustering tasks and/or within individual task are not well captured; 2) the problem of clustering out-of-sample data is seldom considered; and 3) the discriminative property of cluster label matrix is not well explored. In this paper, we propose a novel clustering model, namely multitask spectral clustering (MTSC), to cope with the above challenges. Specifically, two types of correlations are well considered: 1) intertask clustering correlation, which refers the relations among different clustering tasks and 2) intratask learning correlation, which enables the processes of learning cluster labels and learning mapping function to reinforce each other. We incorporate a novel ℓ2,p-norm regularizer to control the coherence of all the tasks based on an assumption that related tasks should share a common low-dimensional representation. Moreover, for each individual task, an explicit mapping function is simultaneously learnt for predicting cluster labels by mapping features to the cluster label matrix. Meanwhile, we show that the learning process can naturally incorporate discriminative information to further improve clustering performance. We explore and discuss the relationships between our proposed model and several representative clustering techniques, including spectral clustering, k-means and discriminative k-means. Extensive experiments on various real-world datasets illustrate the advantage of the proposed MTSC model compared to state-of-the-art clustering approaches.
Please use this identifier to cite or link to this item: