Multi-View actionable patterns for managing traffic bottleneck

Publication Type:
Conference Proceeding
AAAI Workshop - Technical Report, 2015, WS-15-05 pp. 64 - 70
Issue Date:
Full metadata record
Discovering congestion patterns from table-formed traffic reports is critical for traffic bottleneck analysis. However, patterns mined by existing algorithms often do not satisfy user requirements and are not actionable for traffic management. Traffic officers may not pursue the most frequent patterns but expect mining outcomes showing the dependence between congestion and various kinds of road properties for traffic planning. Such multi-view analysis requires to integrate user preferences of data attributes into pattern mining process. To tackle this problem, we propose a multi-view attributes reduction model for discovering the patterns of user interests, in which user views are interpreted as preferred attributes and formulated by attribute orders. Based on the pattern discovery model, a workflow is built for traffic bottleneck analysis, which consists of data preprocessing, preference representation and congestion pattern mining. Our approach is validated on the reports of road conditions from Shanghai, which shows that the resultant multi-view findings are effective for analyzing congestion causes and traffic management.
Please use this identifier to cite or link to this item: