Effect of hydraulic retention time on the performance of a hybrid moving bed biofilm reactor-membrane bioreactor system for micropollutants removal from municipal wastewater

Publication Type:
Journal Article
Citation:
Bioresource Technology, 2018, 247 pp. 1228 - 1232
Issue Date:
2018-01-01
Metrics:
Full metadata record
© 2017 Elsevier Ltd This study evaluated micropollutants removal and membrane fouling behaviour of a hybrid moving bed biofilm reactor-membrane bioreactor (MBBR-MBR) system at four different hydraulic retention times (HRTs) (24, 18, 12 and 6 h). The results revealed that HRT of 18 h was the optimal condition regarding the removal of most selected micropollutants. As the primary removal mechanism in the hybrid system was biodegradation, the attached growth pattern was desirable for enriching slow growing bacteria and developing a diversity of biocoenosis. Thus, the efficient removal of micropollutants was obtained. In terms of membrane fouling propensity analysis, a longer HRT (e.g. HRTs of 24 and 18 h) could significantly mitigate membrane fouling when compared with the shortest HRT of 6 h. Hence, enhanced system performance could be achieved when the MBBR-MBR system was operated at HRT of 18 h.
Please use this identifier to cite or link to this item: