Simultaneous improvement of waste gas purification and nitrogen removal using a novel aerated vertical flow constructed wetland

Publication Type:
Journal Article
Water Research, 2018, 130 pp. 79 - 87
Issue Date:
Filename Description Size
Accepted+Manuscript+Simultaneous+improvement+of+waste+gas+purification+using+a+AVFCW.pdfAccepted Manuscript Version786.92 kB
Adobe PDF
Full metadata record
© 2017 Elsevier Ltd Insufficient oxygen supply is identified as one of the major factors limiting organic pollutant and nitrogen (N) removal in constructed wetlands (CWs). This study designed a novel aerated vertical flow constructed wetland (VFCW) using waste gas from biological wastewater treatment systems to improve pollutant removal in CWs, its potential in purifying waste gas was also identified. Compared with unaerated VFCW, the introduction of waste gas significantly improved NH4+-N and TN removal efficiencies by 128.48 ± 3.13% and 59.09 ± 2.26%, respectively. Furthermore, the waste gas ingredients, including H2S, NH3, greenhouse gas (N2O) and microbial aerosols, were remarkably reduced after passing through the VFCW. The removal efficiencies of H2S, NH3 and N2O were 77.78 ± 3.46%, 52.17 ± 2.53%, and 87.40 ± 3.89%, respectively. In addition, the bacterial and fungal aerosols in waste gas were effectively removed with removal efficiencies of 42.72 ± 3.21% and 47.89 ± 2.82%, respectively. Microbial analysis results revealed that the high microbial community abundance in the VFCW, caused by the introduction of waste gas from the sequencing batch reactor (SBR), led to its optimized nitrogen transformation processes. These results suggested that the VFCW intermittently aerated with waste gas may have potential application for purifying wastewater treatment plant effluent and waste gas, simultaneously.
Please use this identifier to cite or link to this item: