A Wideband Base Station Antenna Element with Stable Radiation Pattern and Reduced Beam Squint

Publication Type:
Journal Article
Citation:
IEEE Access, 2017, 5 pp. 23022 - 23031
Issue Date:
2017-10-13
Metrics:
Full metadata record
Files in This Item:
Filename Description Size
FINAL Article.pdfAccepted Manuscript Version2.12 MB
Adobe PDF
© 2017 IEEE. This paper presents the design procedure, optimization strategy, theoretical analysis, and experimental results of a wideband dual-polarized base station antenna element with superior performance. The proposed antenna element consists of four electric folded dipoles arranged in an octagon shape that are excited simultaneously for each polarization. It provides ±45° slant-polarized radiation that meets all the requirements for base station antenna elements, including stable radiation patterns, low cross polarization level, high port-to-port isolation, and excellent matching across the wide band. The problem of beam squint for beam-tilted arrays is discussed and it is found that the geometry of this element serves to reduce beam squint. Experimental results show that this element has a wide bandwidth of 46.4% from 1.69 to 2.71 GHz with ≥15-dB return loss and 9.8 ± 0.9-dBi gain. Across this wide band, the variations of the half-power-beamwidths of the two polarizations are all within 66.5° ± 5.5°, the port-to-port isolation is >28 dB, the cross-polarization discrimination is >25 dB, and most importantly, the beam squint is <4° with a maximum 10° down-tilt.
Please use this identifier to cite or link to this item: