Mutual component analysis for heterogeneous face recognition

Publication Type:
Journal Article
Citation:
ACM Transactions on Intelligent Systems and Technology, 2016, 7 (3)
Issue Date:
2016-02-01
Full metadata record
Files in This Item:
Filename Description Size
a28-li.pdfPublished Version938.54 kB
Adobe PDF
Heterogeneous face recognition, also known as cross-modality face recognition or intermodality face recognition, refers to matching two face images from alternative image modalities. Since face images from different image modalities of the same person are associated with the same face object, there should be mutual components that reflect those intrinsic face characteristics that are invariant to the image modalities. Motivated by this rationality, we propose a novel approach called Mutual Component Analysis (MCA) to infer the mutual components for robust heterogeneous face recognition. In the MCA approach, a generative model is first proposed to model the process of generating face images in different modalities, and then an Expectation Maximization (EM) algorithm is designed to iteratively learn the model parameters. The learned generative model is able to infer the mutual components (which we call the hidden factor, where hidden means the factor is unreachable and invisible, and can only be inferred from observations) that are associated with the person's identity, thus enabling fast and effective matching for cross-modality face recognition. To enhance recognition performance, we propose an MCA-based multiclassifier framework using multiple local features. Experimental results show that our new approach significantly outperforms the state-of-the-art results on two typical application scenarios: sketch-to-photo and infrared-to-visible face recognition.
Please use this identifier to cite or link to this item: