Towards the understanding of hip squeak in total hip arthroplasty using analytical contact models with uncertainty

Publication Type:
Conference Proceeding
Citation:
Proceedings of the INTER-NOISE 2016 - 45th International Congress and Exposition on Noise Control Engineering: Towards a Quieter Future, 2016, pp. 5539 - 5549
Issue Date:
2016-08-21
Full metadata record
© 2016, German Acoustical Society (DEGA). All rights reserved. Osteoarthritis in hip joints affects patients' quality of life such that often only costly orthopaedic surgeries i.e. total hip arthroplasty (THA) provide relief. Common implant materials are metal alloys, steel or titanium-based, plastics such as ultra-high molecular weight polyethylene, or biocompatible alumina and composite ceramics. Hard-on-hard (HoH) bearing articulations, i.e. ceramic-on-ceramic, or hard-on-soft combinations are used. HoH implants have been known to suffer from squeaking, a phenomenon commonly encountered in friction-induced self-excited vibrations. However, the frictional contact mechanics, its dynamics related to impingement, the effect of socket position, stem configuration, bearing size and patient characteristics are poorly understood. This study gives an overview of the state of the art biomechanical research related to squeaking in THA, with a focus on the effects of friction, stability, related wear and lubrication. An analytical model is proposed to study the onset of friction-induced vibrations in a simplified hemispherical hip stem rubbing in its bearing by varying the contact area. Preliminary results of the complex eigenvalue analysis and stick-slip motion analysis indicate that an increased contact fosters the development of instabilities, even at very small values of the friction coefficient owing to large local contact pressures.
Please use this identifier to cite or link to this item: