Investigations on response time of magnetorheological elastomer isolator for real-time control implementation

Publication Type:
Journal Article
Citation:
Smart Materials and Structures, 2016, 25 (11)
Issue Date:
2016-10-24
Full metadata record
© 2016 IOP Publishing Ltd. Utilising the unique features of MRE materials for vibration isolators has been intensively studied over the last several years. Real-time control of the MRE isolators holds the key to unlock MRE materials' unique characteristics, i.e. instantly changeable shear modulus in continuous and reverse fashion. However, one of the critical issues for the applications of real-time control is the response time delay of MRE vibration isolators, which has not yet been fully addressed and studied. This paper identified the inherent response time of the MRE isolator and explored two feasible approaches to minimise the response time delay. Experiments were designed and conducted to evaluate the effectiveness of the proposed approaches on minimising time delay on: (i) the transient response of current of a large coil that generates magnetic field and (ii) the transient response of shear force from the MRE isolator. The results show that the proposed approaches are effective and promising. For example, the proposed approach is able to reduce the force response time from 421 ms to 52 ms at rising and from 400 ms to 48 ms falling edges respectively. Such level of short response time of the MRE isolators demonstrates the feasibility of application of real-time control and hence is the essential step on the realisation of real-time control of vibration suppression system based on MRE isolator.
Please use this identifier to cite or link to this item: