A tone-based AoA estimation and multiuser precoding for millimeter wave massive MIMO

Publication Type:
Journal Article
Citation:
IEEE Transactions on Communications, 2017, 65 (12), pp. 5209 - 5225
Issue Date:
2017-12-01
Filename Description Size
08019798.pdfPublished Version1.76 MB
Adobe PDF
Full metadata record
© 2017 IEEE. In this paper, we investigate channel estimation and multiuser downlink transmission of a time division duplex massive multiple-input multiple-output (MIMO) system in millimeter wave (mmWave) channels. We propose a tone-based linear search algorithm to facilitate the estimation of angle-of-arrivals (AoAs) of the strongest line-of-sight (SLOS) channel component as well as the scattering components of the users at the base station. Based on the estimated AoAs, we reconstruct the SLOS component and scattering components of the users for downlink transmission. We then derive the achievable rates of maximum-ratio transmission (MRT) and zero-forcing (ZF) precoding based on the SLOS component and the SLOS-plus-scattering components (SLPS), respectively. Taking into account the impact of pilot contamination, our analysis and simulation results show that the SLOS-based MRT can achieve higher data rate than that of the traditional pilot-aided-CSI-based (PAC-based) MRT, under the same mean square errors of channel estimation. As for ZF precoding, the achievable rates of the SLPS-based and the PAC-based are identical. Furthermore, we quantify the achievable rate degradation of the SLOS-based MRT precoding caused by phase quantization errors in the large number of antennas regime. We show that the impact of phase quantization errors on the considered systems cannot be mitigated by increasing the number of antennas and therefore the resolutions of radio frequency phase shifters is critical for the design of efficient mmWave massive MIMO systems.
Please use this identifier to cite or link to this item: