AZA-MS: A novel multiparameter mass spectrometry method to determine the intracellular dynamics of azacitidine therapy in vivo

Publication Type:
Journal Article
Citation:
Leukemia, 2018, 32 (4), pp. 900 - 910
Issue Date:
2018-04-01
Full metadata record
© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. The cytidine analogue, 5-azacytidine (AZA; 5-AZA-cR), is the primary treatment for myelodysplastic syndrome and chronic myelomonocytic leukaemia. However, only ∼50% of treated patients will respond to AZA and the drivers of AZA resistance in vivo are poorly understood. To better understand the intracellular dynamics of AZA upon therapy and decipher the molecular basis for AZA resistance, we have developed a novel, multiparameter, quantitative mass spectrometry method (AZA-MS). Using AZA-MS, we have accurately quantified the abundance of the ribonucleoside (5-AZA-cR) and deoxyribonucleoside (5-AZA-CdR) forms of AZA in RNA, DNA and the cytoplasm within the same sample using nanogram quantities of input material. We report that although AZA induces DNA demethylation in a dose-dependent manner, it has no corresponding effect on RNA methylation. By applying AZA-MS to primary bone marrow samples from patients undergoing AZA therapy, we have identified that responders accumulate more 5-AZA-CdR in their DNA compared with nonresponders. AZA resistance was not a result of impaired AZA metabolism or intracellular accumulation. Furthermore, AZA-MS has helped to uncover different modes of AZA resistance. Whereas some nonresponders fail to incorporate sufficient 5-AZA-CdR into DNA, others incorporate 5-AZA-CdR and effect DNA demethylation like AZA responders, but show no clinical benefit.
Please use this identifier to cite or link to this item: