Debt detection in social security by adaptive sequence classification

Publication Type:
2009, 5914 LNAI pp. 192 - 203
Issue Date:
Filename Description Size
Thumbnail2009005671OK.pdf617.46 kB
Adobe PDF
Full metadata record
Debt detection is important for improving payment accuracy in social security. Since debt detection from customer transaction data can be generally modelled as a fraud detection problem, a straightforward solution is to extract features from transaction sequences and build a sequence classifier for debts. For long-running debt detections, the patterns in the transaction sequences may exhibit variation from time to time, which makes it imperative to adapt classification to the pattern variation. In this paper, we present a novel adaptive sequence classification framework for debt detection in a social security application. The central technique is to catch up with the pattern variation by boosting discriminative patterns and depressing less discriminative ones according to the latest sequence data. © 2009 Springer-Verlag Berlin Heidelberg.
Please use this identifier to cite or link to this item: