Dual influence embedded social recommendation

Publication Type:
Journal Article
World Wide Web, 2018, 21 (4), pp. 849 - 874
Issue Date:
Filename Description Size
qingzhe.zhang.10.1007_s11280-017-0486-5.pdfAccepted Manuscript Version4.53 MB
Adobe PDF
Full metadata record
© 2017, Springer Science+Business Media, LLC. Recommender systems are designed to solve the information overload problem and have been widely studied for many years. Conventional recommender systems tend to take ratings of users on products into account. With the development of Web 2.0, Rating Networks in many online communities (e.g. Netflix and Douban) allow users not only to co-comment or co-rate their interests (e.g. movies and books), but also to build explicit social networks. Recent recommendation models use various social data, such as observable links, but these explicit pieces of social information incorporating recommendations normally adopt similarity measures (e.g. cosine similarity) to evaluate the explicit relationships in the network - they do not consider the latent and implicit relationships in the network, such as social influence. A target user’s purchase behavior or interest, for instance, is not always determined by their directly connected relationships and may be significantly influenced by the high reputation of people they do not know in the network, or others who have expertise in specific domains (e.g. famous social communities). In this paper, based on the above observations, we first simulate the social influence diffusion in the network to find the global and local influence nodes and then embed this dual influence data into a traditional recommendation model to improve accuracy. Mathematically, we formulate the global and local influence data as new dual social influence regularization terms and embed them into a matrix factorization-based recommendation model. Experiments on real-world datasets demonstrate the effective performance of the proposed method.
Please use this identifier to cite or link to this item: