Monte Carlo planning for active object classification
- Publication Type:
- Journal Article
- Citation:
- Autonomous Robots, 2018, 42 (2), pp. 391 - 421
- Issue Date:
- 2018-02-01
Open Access
Copyright Clearance Process
- Recently Added
- In Progress
- Open Access
This item is open access.
© 2017, Springer Science+Business Media New York. Classifying objects in complex unknown environments is a challenging problem in robotics and is fundamental in many applications. Modern sensors and sophisticated perception algorithms extract rich 3D textured information, but are limited to the data that are collected from a given location or path. We are interested in closing the loop around perception and planning, in particular to plan paths for better perceptual data, and focus on the problem of planning scanning sequences to improve object classification from range data. We formulate a novel time-constrained active classification problem and propose solution algorithms that employ a variation of Monte Carlo tree search to plan non-myopically. Our algorithms use a particle filter combined with Gaussian process regression to estimate joint distributions of object class and pose. This estimator is used in planning to generate a probabilistic belief about the state of objects in a scene, and also to generate beliefs for predicted sensor observations from future viewpoints. These predictions consider occlusions arising from predicted object positions and shapes. We evaluate our algorithms in simulation, in comparison to passive and greedy strategies. We also describe similar experiments where the algorithms are implemented online, using a mobile ground robot in a farm environment. Results indicate that our non-myopic approach outperforms both passive and myopic strategies, and clearly show the benefit of active perception for outdoor object classification.
Please use this identifier to cite or link to this item: