A hybridwind speed forecasting system based on a 'decomposition and ensemble' strategy and fuzzy time series

Publication Type:
Journal Article
Citation:
Energies, 2017, 10 (9)
Issue Date:
2017-09-01
Metrics:
Full metadata record
Files in This Item:
Filename Description Size
energies-10-01422-v2.pdfPublished Version2.63 MB
Adobe PDF
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. Accurate and stable wind speed forecasting is of critical importance in the wind power industry and has measurable influence on power-system management and the stability of market economics. However, most traditional wind speed forecasting models require a large amount of historical data and face restrictions due to assumptions, such as normality postulates. Additionally, any data volatility leads to increased forecasting instability. Therefore, in this paper, a hybrid forecasting system, which combines the 'decomposition and ensemble' strategy and fuzzy time series forecasting algorithm, is proposed that comprises two modules-data pre-processing and forecasting. Moreover, the statistical model, artificial neural network, and Support Vector Regression model are employed to compare with the proposed hybrid system, which is proven to be very effective in forecasting wind speed data affected by noise and instability. The results of these comparisons demonstrate that the hybrid forecasting system can improve the forecasting accuracy and stability significantly, and supervised discretization methods outperform the unsupervised methods for fuzzy time series in most cases.
Please use this identifier to cite or link to this item: